4
810 J. Phys. Chem. A, Vol. 114, No. 14, 2010
Rissanen et al.
The rates increase with the electron density in the radical site,
but not with the looseness of the weakest bound electron (i.e.,
lower IE(R)).
Kinetics and Photochemical Data for Use in Stratospheric Modelling:
Evaluation Number 15; Publication 06-2; National Aeronautics and Space
Administration, Jet Propulsion Laboratory, California Institute of Technol-
ogy: Pasadena, CA, 2006.
The room temperature rate coefficients of the R + Cl
2
(3) Chiltz, G.; Goldfinger, P.; Huybrechts, G.; Martens, G.; Verbeke,
G. Chem. ReV. 1963, 63 (4), 355.
reactions also correlate fairly well with the electron affinity of
the radical (R) (Figure 3b). The increasing electron affinity
(4) Poutsma, M. In Methods in Free-Radical Chemistry; Huyser, E. S.,
Ed.; Marcel Dekker: New York, 1969; Vol. 1, pp 79-193.
5) Benson, S. W. U.S. Patent No. 4,199,533, 1980.
(6) Senkan, M. S. Chem. Eng. Prog. 1987, 83 (12), 58.
7) Cormier, S. A.; Lomnicki, S.; Backes, W.; Dellinger, B. EnViron.
Health Perspect. 2006, 114 (6), 810.
2
reduces the radical reactivity toward Cl . This may be under-
stood in the following way. The higher the electron affinity of
the radical, the more the radical holds the electron and does
(
(
not share it with Cl
the formation of the bond between the radical center and Cl
2
, which also has high EA. Consequently
in
(
(
8) Violi, A.; D’Anna, A.; D’Alessio, A. Chemosphere 2001, 42, 463.
9) Scientific Assessment of Ozone Depletion: 2006, Global Ozone
2
the reaction can be hindered by the higher the electron affinity
of the radical.
By inspection of the results presented in parts a and b of
Figure 3, some general conclusions can be drawn. (i) Replacing
hydrogen atoms with halogen atoms in an alkyl radical decreases
Research and Monitoring ProjectsReport No. 50; WMO (World Meteo-
rological Organization): Geneva, Switzerland, 2007; 572 pp.
(
10) (a) http://periodic.lanl.gov/elements/17.html, 28. 09. 2009. (b) http://
en.wikipedia.org/wiki/Chlorine, 28. 09. 2009.
11) http://www.health.state.ny.us/environmental/emergency/chemical_
terrorism/chlorine_tech.htm; 30.09.2009.
12) Wayne, R. P. Chemistry of atmospheres, 3rd ed.; Oxford University
Press, Inc.: New York, 2000.
(
(
the R + Cl
carbon chain at R-position to the radical center increases the R
Cl rate coefficients. (iii) Branching at the R-position seems
2
reaction rate coefficients. (ii) Lengthening the
(
(
13) Johnston, H. S.; Goldfinger, P. J. Chem. Phys. 1962, 37, 700.
14) Bell, T. N.; Perkins, K. A.; Perkins, P. G. J. Phys. Chem. 1977,
+
2
to have a stronger rate enhancing influence than just the carbon
chain length but more studies with the isomeric radicals are
needed to further clarify this issue.
81, 2610.
(
15) Seetula, J. A. J. Chem. Soc., Faraday Trans. 1998, 94, 3561.
(16) Seetula, J. A.; Gutman, D.; Lightfoot, P. D.; Rayes, M. T.; Senkan,
S. M. J. Phys. Chem. 1991, 95, 10688.
(17) Knyazev, V. D.; Bencsura, A.; Dubinsky, I. A.; Gutman, D.; Melius,
C. F.; Senkan, S. M. J. Phys. Chem. 1995, 99, 230.
1
5
As has been discussed above, Seetula et al. studied the
CH Cl + Cl and CH CCl + Cl reaction transition states by
ab initio calculations, together with other alkyl and halogenated
alkyl radical reactions with Cl and found that as the electron
density of the radical center decreases, the transition state of
the R + Cl reaction becomes tighter. Compared to the other
radicals in this study, the CH CHCl radical has higher electron
2
2
3
2
2
(
18) Kaiser, E. W.; Rimai, L.; Schwab, E.; Lim, E. C. J. Phys. Chem.
992, 96, 303.
19) Kaiser, E. W.; Wallington, T. J. J. Phys. Chem. 1995, 99, 8669.
1
2
(
(20) Dobis, O.; Benson, S. W. J. Phys. Chem. A 2000, 104, 5503.
(21) Eskola, A. J.; Timonen, R. S. Phys. Chem. Chem. Phys. 2003, 5,
2
2
557.
22) Marston, G.; Monks, P. S.; Wayne, R. P. In General Aspects of
3
(
density in the radical center due to the methyl group substitution
and it would be interesting to have an ab initio calculation of
the potential energy surface for the reaction path with the
transition state.
the Chemistry of Radicals; Alfassi, Z. B.; Ed.; John Wiley & Sons Ltd.:
New York, 1999; pp 429-471.
(23) Paltenghi, R.; Ogryzlo, E. A.; Bayes, K. D. J. Phys. Chem. 1984,
8, 2595.
8
(24) Pauling, L. Nature of the Chemical Bond, 3rd ed,; Cornell University
Press: Ithaca, NY, 1960; pp 88-95.
Conclusion
(25) Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215.
(
(
26) Thomas, T. D. J. Am. Chem. Soc. 1970, 92, 4184.
27) Seetula, J. A.; Gutman, D. J. Phys. Chem. 1991, 95, 3626.
Three chlorinated alkyl radical reactions with Cl
studied in direct time-resolved measurements. The measured
rate coefficients for two of the reactions studied (CH Cl + Cl
and CH CCl + Cl ) show an interesting behavior as temperature
2
have been
(28) Timonen, R. S.; Seetula, J. A.; Niiranen, J.; Gutman, D. J. Phys.
Chem. 1991, 95, 4009.
2
2
(
29) Linstrom, P. J.; Mallard, W. G. NIST Chemistry Webbook, NIST
3
2
2
Standard Reference Database Number 69, June 2005,; National Institute
of Standards and Technology: Gaithersburg, MD (http://webbook.nist.gov).
(30) Eskola, A. J.; Timonen, R. S.; Marshall, P.; Chesnokov, E. N.;
Krasnoperov, L. N. J. Phys. Chem. A 2008, 112, 7391.
is varied: a negative temperature dependence below a specific
limiting temperature and a positive dependence on temperature
above it. The CH
these temperatures and has steep negative temperature depen-
dence over the whole experimental range covered. Linear
correlations of the determined rate coefficients against radical
properties have been sought in order to gain understanding about
3
2
CHCl + Cl reaction behaves differently at
(
31) Kaiser, E. W.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet.
995, 27, 205.
32) DeMare, G. R.; Huybrechts, G. Trans. Faraday Soc. 1968, 64, 1311.
1
(
(33) Timonen, R. S.; Russell, J. J.; Gutman, D. Int. J. Chem. Kinet.
986, 18, 1193.
1
2
(
34) Eskola, A. J.; Lozovsky, V. A.; Timonen, R. S. Int. J. Chem. Kin.
007, 39, 614.
35) Tyndall, G. S.; Orlando, J. J.; Wallington, T. J.; Dill, M.; Kaiser,
E. W. Int. J. Chem. Kinet. 1997, 29, 43.
the factors affecting radical reactivity in R + Cl
CH Cl , from the CH Cl + Cl reaction, was the only observed
product in the studied reactions.
2
reactions.
2
2
2
2
(
(
36) Lenhardt, T. M.; McDade, C. E.; Bayes, K. D. J. Chem. Phys. 1980,
7
2, 304.
Acknowledgment. R.S.T. and M.P.R. acknowledge the
support from the CoE of the Academy of Finland.
(
(
37) Timonen, R. S.; Gutman, D. J. Phys. Chem. 1986, 90, 2987.
38) Born, M.; Ingemann, S.; Nibbering, N. M. M. J. Am. Chem. Soc.
1
994, 116, 7210.
References and Notes
(39) Born, M.; Ingemann, S.; Nibbering, N. M. M. Int. J. Mass Spectrom.
Ion Processes 2000, 194, 103.
40) Eskola, A. J. PhD Thesis, University of Helsinki, Helsinki, 2007
http://urn.fi/URN:ISBN:978-952-10-3786-3).
(
(
1) Tsang, W. Combust. Sci. Technol. 1990, 74, 99.
(
2) Sander, S. P.; Friedl, R. R.; Ravishankara, A. R.; Golden, D. M.;
(
Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Keller-Rudek,
H.; Finlayson-Pitts, B. J.; Wine, P. H.; Huie, R. E.; Orkin, V. L. Chemical
JP909419V