The Journal of Physical Chemistry A
Article
from the Direct Photolytic Generation of Organic Radicals. J. Phys.
Chem. Lett. 2011, 2, 1295−1300.
alkoxy radicals suggest more fragmentation than is predicted by
commonly used structure−activity relationships.28,32
(7) Morabito, P.; Heicklen, J. Primary Photochemical Processes in the
Photolysis of Alkyl Nitrites at 366nm and 23C in the Presence of 15NO.
Int. J. Chem. Kinet. 1985, 17, 535−546.
More generally, the study of aerosol formation from single
radical species enables the importance of individual reaction
pathways and products in SOA formation to be examined in
detail. For systems whose yields of condensable species are low
(such as the first-generation oxidation of C10 hydrocarbons,
studied here), products that are formed in small yields may still
play a major role in SOA formation. For example, for the straight-
chain structures studied, the primary radical (decyl-1-oxy) was
found to form more SOA than any of the secondary ones. In the
analogous OH + n-decane reaction, the formation of this radical
(via abstraction at the terminal carbon) accounts for only ∼4% of
the total reaction;27 however, the fractional contribution of this
channel to the total SOA formed is likely to be substantially
higher than this. Ultimately, the identification of these key
channels and their products is necessary for relating the amounts
and properties of SOA to the structure of a given precursor
compound.
(8) Heicklen, J. The Decomposition of Alkyl Nitrites and the Reaction
of Alkoxy Radicals. Adv. Photochem. 1988, 14, 177−272.
(9) Orlando, J. J.; Tyndall, G. S.; Bilde, M.; Ferronato, C.; Wallington,
T. J.; Vereecken, L.; Peeters, J. Laboratory and Theoretical Study of the
Oxy Radicals in the OH- and Cl-Initiated Oxidation of Ethene. J. Phys.
Chem. A 1998, 102, 8116−8123.
(10) Lim, Y. B.; Ziemann, P. J. Effects of Molecular Structure on
Aerosol Yields from OH Radical-Initiated Reactions of Linear,
Branched, and Cyclic Alkanes in the Presence of NOx. Environ. Sci.
Technol. 2009, 43, 2328−2334.
(11) Lim, Y. Bin; Ziemann, P. J. Products and Mechanism of Secondary
Organic Aerosol Formation from Reactions of n-Alkanes with OH
Radicals in the Presence of NOx. Environ. Sci. Technol. 2005, 39, 9229−
9236.
(12) Noyes, W. A. Explanation of the Formation of Alkyl Nitrites in
Dilute Solutions; Butyl and Amyl Nitrites. J. Am. Chem. Soc. 1933, 55,
3888−3889.
(13) DeCarlo, P. F.; Kimmel, J. R.; Trimborn, A.; Northway, M. J.;
Jayne, J. T.; Aiken, A. C.; Gonin, M.; Fuhrer, K.; Horvath, T.; Docherty,
K. S.; et al. Field-Deployable, High-Resolution, Time-of-Flight Aerosol
Mass Spectrometer. Anal. Chem. 2006, 78, 8281−8289.
(14) Aiken, A. C.; DeCarlo, P. F.; Jimenez, J. L. Elemental Analysis of
Organic Species with Electron Ionization High-Resolution Mass
Spectrometry. Anal. Chem. 2007, 79, 8350−8358.
(15) Aiken, A. C.; Decarlo, P. F.; Kroll, J. H.; Worsnop, D. R.; Huffman,
J. A.; Docherty, K. S.; Ulbrich, I. M.; Mohr, C.; Kimmel, J. R.; Sueper, D.;
et al. O/C and OM/OC Ratios of Primary, Secondary, and Ambient
Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass
Spectrometry. Environ. Sci. Technol. 2008, 42, 4478−4485.
(16) Hildebrandt, L.; Donahue, N. M.; Pandis, S. N. High Formation of
Secondary Organic Aerosol from the Photo-Oxidation of Toluene.
Atmos. Chem. Phys. 2009, 9, 2973−2986.
(17) Zhang, X.; Cappa, C. D.; Jathar, S. H.; McVay, R. C.; Ensberg, J. J.;
Kleeman, M. J.; Seinfeld, J. H. Influence of Vapor Wall Loss in
Laboratory Chambers on Yields of Secondary Organic Aerosol. Proc.
Natl. Acad. Sci. U. S. A. 2014, 111, 5802−5807.
(18) Presto, A. A.; Miracolo, M. A.; Donahue, N. M.; Robinson, A. L.
Secondary Organic Aerosol Formation from High-NOx Photo-
Oxidation of Low Volatility Precursors: n-Alkanes. Environ. Sci. Technol.
2010, 44, 2029−2034.
(19) Lim, Y. B.; Ziemann, P. J. Chemistry of Secondary Organic
Aerosol Formation from OH Radical-Initiated Reactions of Linear,
Branched, and Cyclic Alkanes in the Presence of NOx. Aerosol Sci.
Technol. 2009, 43, 604−619.
(20) Lambe, A. T.; Onasch, T. B.; Croasdale, D. R.; Wright, J. P.;
Martin, A. T.; Franklin, J. P.; Massoli, P.; Kroll, J. H.; Canagaratna, M. R.;
Brune, W. H.; et al. Transitions from Functionalization to
Fragmentation Reactions of Laboratory Secondary Organic Aerosol
(SOA) Generated from the OH Oxidation of Alkane Precursors.
Environ. Sci. Technol. 2012, 46, 5430−5437.
(21) Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Kroll, J. H.
Secondary Organic Aerosol Formation from Acyclic, Monocyclic, and
Polycyclic Alkanes. Environ. Sci. Technol. 2014, 48, 10227−10234.
(22) Donahue, N. M.; Robinson, A. L.; Stanier, C. O.; Pandis, S. N.
Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile
Organics. Environ. Sci. Technol. 2006, 40, 2635−2643.
(23) Farmer, D. K.; Matsunaga, A.; Docherty, K. S.; Surratt, J. D.;
Seinfeld, J. H.; Ziemann, P. J.; Jimenez, J. L. Response of an Aerosol
Mass Spectrometer to Organonitrates and Organosulfates and
Implications for Atmospheric Chemistry. Proc. Natl. Acad. Sci. U. S. A.
2010, 107, 6670−6675.
(24) Atkinson, R. Rate Constants for the Atmospheric Reactions of
Alkoxy Radicals: An Updated Estimation Method. Atmos. Environ. 2007,
41, 8468−8485.
ASSOCIATED CONTENT
■
S
* Supporting Information
Details of the branching ratio calculation (as shown in Figure 8),
including a figure of radical branching, tables of isomerization
and fragmentation rate constants, and a graph of first-generation
product distributions calculated by an alternative SAR, are given
in the Supporting Information. The material is available free of
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation
under grant number CHE-1012809. We thank Roger Summons
for use of the GC for confirmation of nitrite identities following
synthesis and Paul Ziemann for helpful discussions.
REFERENCES
■
(1) Kroll, J. H.; Seinfeld, J. H. Chemistry of Secondary Organic
Aerosol: Formation and Evolution of Low-Volatility Organics in the
Atmosphere. Atmos. Environ. 2008, 42, 3593−3624.
(2) Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.;
Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.;
Goldstein, A. H.; et al. The Formation, Properties and Impact of
Secondary Organic Aerosol: Current and Emerging Issues. Atmos. Chem.
Phys. 2009, 9, 5155−5236.
(3) Kroll, J. H.; Donahue, N. M.; Jimenez, J. L.; Kessler, S. H.;
Canagaratna, M. R.; Wilson, K. R.; Altieri, K. E.; Mazzoleni, L. R.;
Wozniak, A. S.; Bluhm, H.; et al. Carbon Oxidation State as a Metric for
Describing the Chemistry of Atmospheric Organic Aerosol. Nat. Chem.
2011, 3, 133−139.
(4) Goldstein, A. H.; Galbally, I. E. Known and Unexplored Organic
Constituents in the Earth’s Atmosphere. Environ. Sci. Technol. 2007, 41,
1514−1521.
(5) Ziemann, P. J.; Atkinson, R. Kinetics, Products, and Mechanisms of
Secondary Organic Aerosol Formation. Chem. Soc. Rev. 2012, 41, 6582−
6605.
(6) Kessler, S. H.; Nah, T.; Carrasquillo, A. J.; Jayne, J. T.; Worsnop, D.
R.; Wilson, K. R.; Kroll, J. H. Formation of Secondary Organic Aerosol
8815
dx.doi.org/10.1021/jp506562r | J. Phys. Chem. A 2014, 118, 8807−8816