K. M. Wilkoxen and M. R. Ghadiri, Antibacterial agents based on the
cyclic D,L-a-peptide architecture, Nature, 2001, 412, 452–456; (b) V.
Sidorov, F. W. Kotch, J. L. Kueber, Y.-F. Lam and J. T. Davis, Chloride
transport across lipid bilayers and transmembrane potential induction
by an oligophenoxyacetamide, J. Am. Chem. Soc., 2003, 125, 2840–
Natl. Acad. Sci. U. S. A., 2007, 104, 20737–20742; (e) Y. Kim, H.
Kim, Y. H. Ko, N. Selvapalam, M. V. Rekharsky, Y. Inoue and K.
Kim, Complexation of aliphatic ammonjum ions with a water-soluble
cucurbit[6]uril derivative in pure water: Isothermal calorimetric, NMR,
and X-ray crystallographic study, Chem.–Eur. J., 2009, 15, 6143–6151;
(f) S. Moghaddam, Y. Inoue and M. K. Gilson, Host–guest complexes
with protein-ligand-like affinities: computational analysis and design,
J. Am. Chem. Soc., 2009, 131, 4012–4021.
2
841; (c) J. R. Broughman, L. P. Shank, W. Takeguchi, B. D. Schultz,
T. Iwamoto, K. E. Mitchell and J. M. Tomich, Distinct structural
elements that direct solution aggregation and membrane assembly in
the channel-forming peptide M2GlyR, Biochemistry, 2002, 41, 7350–
15 Recent examples of applications of CB[n]: (a) S. Ghosh and L. Isaacs,
biological catalysis regulated by cucurbit[7]uril molecular containers,
J. Am. Chem. Soc., 2010, 132, 4445–4454; (b) M. V. Rekharsky,
H. Yamamura, Y. H. Ko, N. Selvapalam, K. Kim and Y. Inoue,
Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril
and cucurbit[7]uril, Chem. Commun., 2008, 2236–2238; (c) C. Yang,
T. Mori, Y. Origane, Y. H. Ko, N. Selvapalam, K. Kim and Y. In-
oue, Highly stereoselective photocyclodimerization of g-cyclodextrin-
appended anthracene mediated by g-cyclodextrin and cucurbit[8]uril:
A dramatic steric effect operating outside the binding site, J. Am. Chem.
Soc., 2008, 130, 8574–8575; (d) W. M. Nau, G. Ghale, A. Hennig, H.
Bakirci and D. M. Bailey, Substrate-selective supramolecular tandem
assays: monitoring enzyme inhibition of arginase and diamine oxidase
by fluorescent dye displacement from calixarene and cucurbituril
macrocycles, J. Am. Chem. Soc., 2009, 131, 11558–11570; (e) S. Gadde,
E. K. Batchelor and A. E. Kaifer, Controlling the formation of cyanine
dye H- and J-aggregates with cucurbituril hosts in the presence of
anionic polyelectrolytes, Chem.–Eur. J., 2009, 15, 6025–6031; (f) E. A.
Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed and
O. A. Scherman, Supramolecular cross-linked networks via host–guest
complexation with cucurbit[8]uril, J. Am. Chem. Soc., 2010, 132, 14251–
14260; (g) J. J. Reczek, A. A. Kennedy, B. T. Halbert and A. R.
Urbach, Multivalent recognition of peptides by modular self-assembled
receptors, J. Am. Chem. Soc., 2009, 131, 2408–2415; (h) D. W. Lee, K. M.
Park, M. Banerjee, S. H. Ha, T. Lee, K. Suh, S. Paul, H. Jung, J. Kim, N.
Selvapalam, S. H. Ryu and K. Kim, Supramolecular fishing for plasma
membrane proteins using an ultrastable synthetic host–guest binding
pair, Nat. Chem., 2010, 3, 154–159.
7
358; (d) W. M. Leevy, G. M. Donato, R. Ferdani, W. E. Goldman,
P. H. Schlesinger and G. W. Gokel, Synthetic hydraphile channels of
appropriate length kill Escherichia coli, J. Am. Chem. Soc., 2002, 124,
9
022–9023.
8
(a) L.-Q. Gu, O. Braha, S. Conlan, S. Cheley and H. Bayley, Stochastic
sensing of organic analytes by a pore-forming protein containing a
molecular adapter, Nature, 1999, 398, 686–690; (b) B. A. Cornell,
V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L.
Wieczorek and R. J. Pace, A biosensor that uses ion-channelswitches,
Nature, 1997, 387, 580–583; (c) G. Das, P. Talukdar and S. Matile, Flu-
orometric detection of enzyme activity with synthetic supramolecular
pores, Science, 2002, 298, 1600–1602; (d) S. Litvinchuk, H. Tanaka, T.
Miyatake, D. Pasini, T. Tanaka, G. Bollot, J. Mareda and S. Matile,
Synthetic pores with reactive signal amplifiers as artificial tongues, Nat.
Mater., 2007, 6, 576–580.
9
P. Talukdar, G. Bollot, J. Mareda, N. Sakai and S. Matile, Ligand-gated
synthetic ion channels, Chem.–Eur. J., 2005, 11, 6525–6532.
0 V. Gorteau, G. Bollot, J. Mareda, D. Pasini, D.-H. Tran, A. N. Lazar,
A. W. Coleman, N. Sakai and S. Matile, Synthetic multifunctional pores
that open and close in response to chemical stimulation, Bioorg. Med.
Chem., 2005, 13, 5171–5180.
1 O. A. Okunola, J. L. Seganish, K. J. Salimian, P. Y. Zavalij and J. T.
Davis, Membrane-active calixarenes: toward ‘gating’ transmembrane
anion transport, Tetrahedron, 2007, 63, 10743–10750.
1
1
1
2 Reviews on cucurbit[n]uril: (a) W. L. Mock, Cucurbituril, Top. Curr.
Chem., 1995, 175, 1–24; (b) J. W. Lee, S. Samal, N. Selvapalam, H.-
J. Kim and K. Kim, Cucurbituril homologues and derivatives: New
opportunities in supramolecular chemistry, Acc. Chem. Res., 2003, 36,
16 Y. J. Jeon, H Kim, S. Jon, N. Selvapalam, D. H. Oh, I. Seo, C.-S.
Park, S. R. Jung, D.-S. Koh and K. Kim, Artificial ion channel formed
by cucurbit[n]uril derivatives with a carbonyl group fringed portal
6
21–630; (c) K. Kim and H.-J. Kim, In Encyclopedia of Supramolecular
Chemistry, J. L. Atwood, J. W. Steed, Ed., Marcel Dekker Inc.,
New York, 2004; pp 390–397; (d) J. Lagona, P. Mukhopadhyay, S.
Chakrabarti and L. Isaacs, The cucurbit[n]uril family, Angew. Chem.,
Int. Ed., 2005, 44, 4844–4870; (e) K. Kim, N. Selvapalam, Y. H. Ko,
K. M. Park, D. Kim and J. Kim, Functionalized cucurbiturils and their
applications, Chem. Soc. Rev., 2007, 36, 267–279.
+
reminiscent of the selectivity filter of K channels, J. Am. Chem. Soc.,
2004, 126, 15944–15945.
17 (a) W. Ong, M. G o´ mez-Kaifer and A. E. Kaifer, Cucurbit[7]uril: A
very effective host for viologens and their cation radicals, Org. Lett.,
2002, 4, 1791–1794; (b) H.-J. Kim, W. S. Jeon, Y. H. Ko and K. Kim,
Inclusion of methylviologen in cucurbit[7]uril, Proc. Natl. Acad. Sci.
U. S. A., 2002, 99, 5007–5011.
1
3 (a) W. A. Freeman, W. L. Mock and N.-Y. Shih, Cucurbituril, J. Am.
Chem. Soc., 1981, 103, 7367–7368; (b) J. Kim, I.-S. Jung, S.-Y. Kim,
E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim, New
cucurbituril homologues: syntheses, isolation, characterization, and X-
ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8), J. Am. Chem.
Soc., 2000, 122, 540–541; (c) A. Day, A. P. Arnold, R. J. Blanch and
B. Snushall, Controlling factors in the synthesis of cucurbituril and
its homologues, J. Org. Chem., 2001, 66, 8094–8100; (d) S. Liu, P. Y.
Zavalij and L. Isaacs, Cucurbit[10]uril, J. Am. Chem. Soc., 2005, 127,
18 (a) D. Sobransingh and A. E. Kaifer, Binding interactions between the
host cucurbit[7]uril and dendrimer guests containing a single ferrocenyl
residue, Chem. Commun., 2005, 5071–5073; (b) T. Ooya, D. Inoue,
H. S. Choi, Y. Kobayashi, S. Loethen, D. H. Thompson, Y. H. Ko,
K. Kim and N. Yui, pH-Responsive movement of cucurbit[7]uril in a
diblock polypseudorotaxane containing dimethyl a-cyclodextrin and
cucurbit[7]uril, Org. Lett., 2006, 8, 3159–3162.
19 R. J. Coulston, H. Onagi, S. F. Lincoln and C. J. Easton, Harnessing
the energy of molecular recognition in a nanomachine having a
photochemical on/off switch, J. Am. Chem. Soc., 2006, 128, 14750–
14751.
1
6798–16799.
1
4 Representative examples of the host–guest chemistry of CB[n]: (a) W. S.
Jeon, K. Moon, S. H. Park, H. Chun, Y. H. Ko, J. Y. Lee, E. S. Lee, S.
Samal, N. Selvapalam, M. V. Rekharsky, V. Sindelar, D. Sobransingh, Y.
Inoue, A. E. Kaifer and K. Kim, Complexation of ferrocene derivatives
by the cucurbit[7]uril host: A comparative study of the cucurbituril
and cyclodextrin host families, J. Am. Chem. Soc., 2005, 127, 12984–
20 F. D. Lewis, J. E. Elbert, A. L. Upthagrove and P. D. Hale, Structure
and photoisomerization of (E)- and (Z)-cinnamamides and their Lewis
acid complexes, J. Org. Chem., 1991, 56, 553–561.
1
2989; (b) S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y.
21 As described in the text, the mechanism of the photoinduced dissoci-
ation of host–guest complex CB[7]·E-1 is not clear at the moment.
However, we can speculate two possibilities, one involving isomer-
ization followed by dissociation of the guest and the other involving
dissociation followed by isomerization. In the latter case, the efficiency
of the E to Z photoisomerization would not affected by the presence of
CB[7] as the product Z-1 has little interaction with CB[7], whereas that
of the reverse process is expected to increase as the product E-1 forms a
stable host–guest complex with CB[7], which is what we observed here.
However, further investigation is needed to establish the mechanism
and the origin of the higher Z to E photoisomerization efficiency.
Zavalij and L. Isaacs, The cucurbit[n]uril family: Prime components
for self-sorting systems, J. Am. Chem. Soc., 2005, 127, 15959–15967;
(
c) M. V. Rekharsky, H. Yamamura, C. Inoue, M. Kawai, I. Osaka,
R. Arakawa, K. Shiba, A. Sato, Y. H. Ko, N. Selvapalam, K. Kim,
Y. Inoue and Chiral, Recognition in Cucurbituril Cavities, J. Am.
Chem. Soc., 2006, 128, 14871–14880; (d) M. V. Rekharsky, T. Mori,
C. Yang, Y. H. Ko, N. Selvapalam, H. Kim, D. Sobransingh, A. E.
Kaifer, S. Liu, L. Isaacs, W. Chen, S. Moghaddam, M. K. Gilson,
K. Kim and Y. Inoue, A synthetic host–guest system achieves avidin-
biotin affinity by overcoming enthalpy–entropy compensation, Proc.
This journal is © The Royal Society of Chemistry and Owner Societies 2011 Photochem. Photobiol. Sci., 2011, 10, 1415–1419 | 1419