4
Tetrahedron
3. Kimura, H.; Nagai, Y.; Umemura K.; Kimura, Y. Antioxid. Redox Sign.
successfully demonstrated to the practical utility in the imaging
ACCEPTED MANUSCRIPT
2005, 7, 795.
4. Hu, L. F.; Lu, M.; Wu, Z.; Wong, Y. P. T. H.; Bian, J. S. Mol.
of H2S in living A431 cells.
3. Experimental section
3.1. Instruments and Materials
Pharmacol. 2009, 75, 27.
5. Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.;
Mustafa, A. K.; Mu, W.; Zhang, S. S.; Snyder, H.; Wang, R. Science
2008, 322, 587.
Unless otherwise stated, solvents were purified by standard
methods prior to use. All reagents were purchased from
commercial suppliers and used as received. Twice-distilled water
was used throughout all experiments. NMR spectra were
recorded on a BRUKER 500 or 600 spectrometer, All accurate
6. Kimura, H. Amino Acids 2011, 41, 113.
7. Kulkarni, K. H.; Monjok, E. M.; Zeyssig,mR.; Kouamou, G.; Bongmba,
O. N.; Opere, C. A.; Njie, Y. F.; Ohia, S. E. Neurochem. Res. 2009, 34,
400.
8. Ding, Y. B.; Tang, Y. Y.; Zhu, W. H.; Xie, Y. S. Chem. Soc. Rev. 2015,
44, 1101.
9. Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
10. Xiong, B.; Peng, L.; Cao, X.; He, Y.; Yeung, E. S. Analyst 2015, 140,
1763.
11. Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev. 2015, 44,
4596.
12. Li, J.; Yin, C.; Huo, F. RSC Adv. 2015, 5, 2191.
13. Wang, F. Y.; Zhou, L.; Zhao, C. C.; Wang, R.; Fei, Q.; Luo, S. H.; Guo,
Z. Q.; Tian, H.; Zhu, W. H. Chem. Sci. 2015, 6, 2584.
14. Xie, H. F.; Jiang, X. H.; Zeng, F.; Yu, C. M.; Wu, S. Z. Sens. Actuators
B: Chem. 2014, 220, 504.
15. Li, Y. H.; Sun, Y.; Li, J. C.; Su, Q. Q.; Yuan, W.; Dai, Y.; Han, C. M.;
Wang, Q. H.; Feng, W.; Li, F. Y. J. Am. Chem. Soc. 2015, 137, 6407.
16. Li, P.; Xiao, H. B.; Cheng, Y. F.; Zhang, W.; Huang, F.; Zhang, W.;
Wang, H.; Tang, B. Chem. Commun. 2014, 50, 7184.
17. Chen, Y. C.; Bai, Y.; Han, Z. W.; He, J.; Guo, Z. J. Chem. Soc. Rev.
2015, 44, 4517.
18. Xu, S. Y.; Sun, X. L.; Ge, H. B.; Arrowsmith, R. L.; Fossey, J. S.;
Pascu, S. I.; Jiang, Y. B.; James, T. D. Org, Biomol. Chem. 2015, 13,
4143.
19. Yuan, L.; Lin,W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2013,
42, 622.
mass spectrometric experiments were performed on
a
micrOTOF-Q II mass spectrometer (BrukerDaltonik, Germany).
UV-Vis absorption spectra were measured using a Shimadzu
UV-2450 spectrophotometer. Uncorrected emission spectra were
recorded at room temperature on a HITACHI F4600 fluorescence
spectrophotometer with both the excitation and emission slit
widths set at 5.0 nm. Cell imaging was performed with an
Olympus 71X microscope. TLC analysis was performed on silica
gel plates and column chromatography was conducted over silica
gel (mesh 200–300), both of which were obtained from Qingdao
Ocean Chemicals.
3.2. Synthesis of Probe 1
41
A mixture of 3-hydroxyflavone 2 (238 mg, 1.0 mmol) and
NBD-Cl (199 mg, 1.0 mmol) was dissolved in 20 mL ethanol.
Triethylamine (121 mg, 1.2 mmol) was added to the reaction
mixture, and the resultant reaction mixture was stirred at 45℃
overnight. The obtained solid was isolated by filtration, washed
with 10 mL ethanol and yielding a brown solid 1 (248 mg, 62%).
1H NMR (500 MHz, DMSO) δ 8.61 (d, J = 8.4 Hz, 1H), 8.12 (dd,
J = 7.9, 1.3 Hz, 1H), 7.95 (ddd, J = 15.8, 11.6, 7.4 Hz, 4H), 7.65
– 7.50 (m, 4H), 7.34 (d, J = 8.4 Hz, 1H). 13C NMR (150 MHz,
DMSO) 171.37, 157.71, 155.82, 151.37, 145.18, 144.81, 135.49,
135.44, 135.25, 132.45, 131.48, 129.51, 128.82, 126.33, 125.66,
123.81, 119.35, 110.71. HRMS (EI) m/z calcd for [C21H11N3O6 +
Na]+: 424.0648, Found : 424.0549.
20. Wu, B. Y.; Yan, X. P. Chem. Commun. 2015, 51, 3903.
21. Lim, S. Y.; Hong, K. H.; Kim, D. I.; Kwon, H.; Kim, H. J. J. Am. Chem.
Soc. 2014, 136, 7018.
22. Zhang, P. S.; Li, J.; Li, B. W.; Xu, J. S.; Zeng, F.; Lv, J.; Wu, S. Z.
Chem. Commun. 2015, 51, 4414.
23. Zheng, Y.; Zhao, M.; Qiao, Q.; Liu, H.; Lang, H.; Xu, Z. Dyes Pigm.
2013, 98, 367.
24. Li, W.; Sun,W.; Yu, X.; Du, L.; Li, M. J. Fluoresc. 2013, 23, 181.
25. Zhang, J.; Guo, W. Chem. Commun. 2014, 50, 4214.
26. Chen, B.; Li, W.; Lv, C.; Zhao, M.; Jin, H.; Jin, H.; Du, J.; Zhang L.;
Tang, X. Analyst 2013, 138, 946.
27. Yang, Y.; Yin, C.; Huo, F.; Zhang, Y.; Chao, J. Sens. Actuators, B
2014, 203, 596.
28. Fu, L.; Tian, F. F.; Lai, L.; Liu, Y.; Harvey, P. D.; Jiang, F. L. Sens.
Actuators, B 2014, 193, 701.
29. Xuan, W.; Pan, R.; Cao, Y.; Liu, K.; Wang, W. Chem. Commun. 2012,
48, 10669.
30. Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton,
A. R.; Xian M. Angew. Chem., Int. Ed. 2011, 50, 10327.
31. Peng, B.; Chen, W.; Liu, C.; Rosser, E. W.; Pacheco, A.; Zhao, Y.;
Aguilar, H. C.; Xian, M. Chem. – Eur. J. 2014, 20, 1010.
32. Xu, Z.; Xu, L.; Zhou, J.; Xu, Y.; Zhu, W.; Qian, X. Chem.Commun.
2012, 48, 10871.
33. Hou, F.; Huang, L.; Xi, P.; Cheng, J.; Zhao, X.; Xie, G.; Shi, Y.; Chen,
F.; Yao, X.; Bai D.; Zeng, Z. Inorg. Chem. 2012, 51, 2454.
34. Liu, T.; Xu, Z.; Spring D. R.; Cui, J. Org. Lett. 2013, 15, 2310.
35. Zheng, K.; Lin, W.; Tan, L.; Cheng, D. Anal. Chim. Acta 2015, 853,
548.
36. Wei, C.; Zhu, Q.; Liu, W.; Chen, W.; Xi, Z.; Yi, L. Org. Biomol. Chem.
2014, 12, 479.
37. Wei, C.; Wei, L.; Xi, Z.; Yi, L. Tetrahedron Lett. 2013, 54, 6937.
38. Wang, J.; Yu, H.; Li, Q.; Shao, S. Talanta 2015, 144, 763.
39. Buffa, M.; Carturan, S.; Quaranta, A.; Maggioni, G.; Mea, G. D. Opt.
Mater. 2012, 34, 1219.
3.3. Imaging of A431 cells
A431 cells were seeded in a 12-well plate in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum and 1% penicillin, incubated under the
atmosphere of 5% CO2 and 95% air at 37 ℃ for 24 h.
Immediately before the experiments, the cells were washed with
PBS buffer. the cells were pre-incubated with NaHS (100.0 ꢀM)
for 30 min. After washing with PBS three times, A431 cells were
then incubated with the probe (5.0 ꢀM) for 30 min at 37 °C. For
the control experiment, A431 cells were incubated with the probe
(5.0 ꢀM) for 30 min at 37 °C, and Fluorescence imaging was
performed after washing the cells three times with PBS buffer.
The fluorescence images were obtained using Olympus 71X
microscope for collecting experiment images.
Acknowledgements
The research was supported by Item of Scientific Research
Fund for Doctor of Qiqihar Medical University (No. QY2016B-
18).
References and notes
†
Electronic supplementary information (ESI) available. See DOI:
10.1016/j.tet.2015.xx.xxx.
40. For example, the concentration of H2S could be as low as low ꢀM or
even pM, while common thiols such as GSH could be up to 5 mM high;
catalytic cysteine in proteins could have a pka much lower than 7,
which should then compete strongly with H2S to react with the probe.
1. Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. 2011, 51, 169.
2. d’Emmanuele, R.; Bianca, di Villa, Sorrentino, R.; Mirone, V.; Cirino,
G. Nat. Rev. 2011, 8, 286.