K. Tanaka, K. Ajiki / Tetrahedron Letters 45 (2004) 5677–5679
5679
Stricks, W.; Kapoor, R. C. J. Am. Chem. Soc. 1955, 77,
4733; (g) Sanger, F. Nature 1953, 171, 1025.
Future work will include elucidation of the role of
phosphine and cationic character of rhodium for this
reaction, and further utilization of cationic rhodium(I)
complexes to a variety of organosulfur chemistry pro-
cesses.
6. (a) Harpp, D. N.; Smith, R. A. J. Am. Chem. Soc. 1982,
104, 6045; (b) Haraldson, L.; Olander, C. J.; Sunner, S.;
Varde, E. Acta Chem. Scand. 1960, 14, 1509; (c) Parker, A.
J.; Kharasch, N. J. Am. Chem. Soc. 1960, 82, 3071; (d)
McAllan, D. T.; Cullum, T. V.; Dean, R. A.; Fidler, F. A.
J. Am. Chem. Soc. 1951, 73, 3627.
References and notes
7. Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2003,
125, 6624.
1. (a) Cremlyn, R.; An, J. Introduction to Organosulfur
Chemistry; Wiley & Sons: New York, 1996; (b) Organic
Sulfur Chemistry: Structure and Mechanism; Oae, S., Ed.;
CRC: Boca Raton, FL, 1991.
2. Recent examples of selective oxidative coupling of thiols
to disulfides, see: metal oxidants: (a) Noureldin, N. A.;
Caldwell, M.; Hendry, J.; Lee, D. G. Synthesis 1998, 1587;
peroxides: (b) Hajipour, A. R.; Mallakpour, S. E.; Adibi,
H. J. Org. Chem. 2002, 67, 8666; (c) halogens: Ali, M. H.;
McDermott, M. Tetrahedron Lett. 2002, 43, 6271; (d) air:
Shah, S. T. A.; Khan, K. M.; Fecker, M.; Voelter, W.
Tetrahedron Lett. 2003, 44, 6789.
3. Synthesis of unsymmetrical disulfides by nucleophilic
substitution of sulfenyl derivatives with thiols, see: (a)
Bao, M.; Shimizu, M. Tetrahedron 2003, 59, 9655; (b)
Leriverend, M.; Metzner, P. Synthesis 1994, 761; (c)
Armitage, D. A.; Clark, M. J.; Tso, C. C. J. Chem. Soc.,
Perkin Trans. 1 1972, 860; (d) Boustany, K. S.; Sullivan,
A. B. Tetrahedron Lett. 1970, 3547; (e) Brois, S. J.; Pilot, J.
F.; Bamum, H. W. J. Am. Chem. Soc. 1970, 92, 7629; (f)
Douglass, I. B.; Martin, F. T.; Addor, R. J. Org. Chem.
1951, 16, 1297.
4. (a) Nagano, T.; Arakane, K.; Hirobe, M. Tetrahedron
Lett. 1980, 21, 5021; (b) Nelander, B.; Sunner, S. J. Am.
Chem. Soc. 1972, 94, 3576; (c) Sayamol, K.; Knight, A. R.
Can. J. Chem. 1968, 46, 999; (d) Milligan, B.; Rivett, D.
E.; Savige, W. E. Aust. J. Chem. 1963, 16, 1020; (e)
Rosengren, Kj. Acta Chem. Scand. 1962, 16, 1401; (f)
Leandri, G.; Tundo, A. Ric. Sci. 1953, 23, 1646, Chem.
Abstr. 1954, 48, 12699t.
8. Transition metal-catalyzed cleavage of disulfide bond, see:
(a) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205;
(b) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435.
9. The active catalyst was prepared by mixing [Rh(cod)2]BF4
and PPh3 in CH2Cl2 followed by hydrogenation (1 atm, rt,
0.5 h).
10. Tanaka, K.; Ajiki, K. Tetrahedron Lett. 2004, 45, 25.
11. First report for the dehydrogenation of benzenethiol to
diphenyl disulfide under inert atmosphere, see: Ogawa, A.;
Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999,
121, 5108.
12. The highest yield of disulfides was obtained at 4 °C for 1 h
(Eq. 1), but longer reaction time (16 h) at 4 °C decreased
the yield of disulfides and thiols were regenerated. This
result indicates that this cationic rhodium(I)-catalyzed
dehydrogenation reaction is reversible process. See Ref.
10.
13. Disulfide–thiol exchange reaction, see: Dalman, G.;
McDermed, J.; Gorin, G. J. Org. Chem. 1964, 29, 1480.
14. Arisawa and Yamaguchi reported the exchange reaction
of disulfide and diselenide or ditelluride using
RhH(PPh3)4/p-tol3P/trifluoromethanesulfonic acid combi-
nation catalyst, see: Ref. 7.
15. Exchange reaction of di-n-butyl disulfide (1 equiv) and
diphenyl diselenide (4 equiv) proceeded in the same
reaction conditions (CH2Cl2, 80 °C, 0.5 h) to give corre-
sponding selenosulfide in 43% yield.
16. Sample procedure (Eq. 4): Under air, to a CH2Cl2 (Wako
130-02457, 1.0 mL) solution of bis(p-methoxyphenyl)disul-
fide (278.4 mg, 1.00 mmol) and di-n-butyl disulfide
(713.4 mg, 4.00 mmol) was added a CH2Cl2 (7.0 mL)
solution of [Rh(cod)2]BF4 (12.2 mg, 0.030 mmol). The
resulting solution was kept at 25 °C for 1.5 h under air.
The solution was concentrated and purified by silica gel
chromatography (hexane/EtOAc ¼ 20:1), which furnished
n-butyl p-methoxyphenyl disulfide (370.8 mg, 1.62 mmol,
81%).
5. (a) Itoh, T.; Tsutsumi, N.; Ohsawa, A. Bioorg. Med.
Chem. Lett. 1999, 9, 2161; (b) Do, Q. T.; Elothmani, D.;
Guillanton, G. L.; Simonet, J. Tetrahedron Lett. 1997, 38,
3383; (c) Kice, J. L.; Ekman, G. E. J. Org. Chem. 1975, 40,
711; (d) Benesch, R. E.; Benesch, R. J. Am. Chem. Soc.
1958, 80, 1666; (e) Ryle, A. P.; Sanger, F.; Smith, L. F.;
Kitai, R. Biochem. J. 1955, 60, 541; (f) Kolthoff, I. M.;