1864
M. Soroka, K. Kołodziejczyk / Tetrahedron Letters 44 (2003) 1863–1865
Scheme 3.
dried in an oven) gives ammonia. So, the mixture of
hexamethyldisilazane and alumina is just a source of
ammonia in this reaction.
Chem. 1988, 66, 310; (b) Dehnel, A.; Finet, J. P.; Lavielle,
G. Synthesis 1977, 474; (c) Heymes, A.; Chekroun, I.
Synthesis 1987, 245; (d) Malenko, D. M.; Nesterova, L.
I.; Luk’yanenko, S. N.; Sinitsa, A. D. Zh. Obshch. Khim.
1990, 60, 1186; (e) Onis’ko, P. P.; Kim, T. V.; Kiseleva,
E. I.; Sinitsa, A. D. Zh. Obshch. Khim. 1996, 66, 1283; (f)
Onys’ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Prokopenko,
V. P.; Sinitsa, A. D. Zh. Obshch. Khim. 1990, 60, 523; (g)
Onys’ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D.
Zh. Obshch. Khim. 1987, 57, 1233; (h) Onys’ko, P. P.;
Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Zh. Obshch.
Khim. 1993, 63, 1906; (i) Onys’ko, P. P.; Kim, T. V.;
Kiseleva, E. I.; Sinitsa, A. D. Zh. Obshch. Khim. 1997, 67,
1642; (j) Onys’ko, P. P.; Kim, T. V.; Kiseleva, E. I.;
Turov, A. V. Zh. Obshch. Khim. 1990, 60, 1425; (k)
Russell, G. A.; Yao, C.-F. J. Org. Chem. 1992, 57, 6508;
(l) Tupchienko, S. K.; Dudchenko, T. N.; Sinitsa, A. D.
Zh. Obshch. Khim. 1985, 55, 776.
7
2. Ammonia reacts ‘in situ’ with aromatic aldehydes to
give
hydrobenzamides
(1-aryl-N,N%-bis(arylidene)-
methanediamine) as sole products (Scheme 2).8
3. Then, the hydrobenzamide reacts with diethyl
phosphite9 to give a diethyl N-arylidene-1-amino-1-
arylmethylphosphonate (Scheme 3), which can be easily
hydrolyzed to a diethyl 1-amino-1-arylmethylphospho-
nate and isolated as its sulphonate or hydrochloride.
In conclusion, for the preparation of diethyl 1-amino-1-
arylmethylphosphonates via diethyl N-arylidene-1-
amino-1-arylmethylphosphonates we recommend the
direct reaction of hydrobenzamide with diethyl phos-
phite,10 instead of aromatic aldehydes with hexamethyl-
disilazane and alumina as the catalyst and solid phase,
as has been described previously.1
4. Since the hexamethyldisilazane does not react with a
freshly distilled dry aldehyde, a simple preparation of
trimethylsilylimines in the reaction of an aldehyde with
hexamethyldisilazane is possible only under harsh condi-
tions for nonenolizable aldehydes. For a recent review
see: (a) Panunzio, M.; Zarantonello, P. Org. Process Res.
Develop. 1998, 2, 49–59. For examples of the preparation
and use of N-trimethylsilylimines see: (b) Cainelli, G.;
Giacomini, D.; Panunzio, M.; Martelli, G.; Spunta, G.
Tetrahedron Lett. 1987, 28, 5369; (c) Cainelli, G.; Panun-
zio, M.; Giacomini, D. Tetrahedron Lett. 1991, 32, 121;
(d) Chan, L.-H.; Rochow, E. G. J. Organomet. Chem.
1967, 9, 231; (e) Georg, G. I.; Harriman, G. C. B.;
Hepperle, M.; Clowers, J. S.; Vandervelde, D. G.; Himes,
R. H. J. Org. Chem. 1996, 61, 2664–2676; (f) Georg, G.
I.; Harriman, G. C. B.; Peterson, S. A. J. Org. Chem.
1995, 60, 7366; (g) Guillemin, J.-C.; Ammi, L.; Denis,
J.-M. Tetrahedron Lett. 1988, 29, 1287; (h) Ha, D.-C.;
Hart, D. J.; Yang, T.-K. J. Am. Chem. Soc. 1984, 106,
4819; (i) Hart, D. J.; Kanai, K.-I.; Thomas, D. G.; Yang,
T.-K. J. Org. Chem. 1983, 48, 289; (j) Kruger, C.;
Rochow, E. G.; Wannagat, U. Chem. Ber. 1963, 96, 2132.
5. 1-Amino-1-arylmethylphosphonates were prepared for
the first time by Kabachnik and Medved2d in a reaction
of ammonia, diethyl phosphite and an aldehyde (or
ketones), the so called Kabachnik–Medved reaction—for
a recent review see: (a) Cherkasov, R. A.; Galkin, V. I.
Uspekhi Khim. 1998, 67, 940–968. However, the use of
ammonia in this, Mannich type, reaction gave a rather
low yield of the desired product. Imines are not the
primary products of the reactions of ammonia with alde-
hydes or ketones. Ammonia reacts with formaldehyde to
give hexamethylenetetramine, with aliphatic aldehydes to
give 2,4,6-trialkyl-1,3,5-hexahydrotriazines and with aro-
matic aldehydes to give hydrobenzamides. For a disscus-
sion see: (b) Nielsen, A. T.; Atkins, R. L.; Moore, D. W.;
Scott, R.; Mallory, D.; LaBerge, J. M. J. Org. Chem.
1973, 38, 3288. Moreover, an equilibrium between hex-
References
1. Sardarian, A. R.; Kaboudin, B. Tetrahedron Lett. 1997,
38, 2543–2546.
2. The 1-amino-1-arylmethylphosphonates are very well
known compounds. For examples of their previous
preparation, see: (a) Chalmers, M. E.; Kosolapoff, G. M.
J. Am. Chem. Soc. 1953, 75, 5278; (b) Gross, H.; Beisert,
S.; Costisella, B. J. Prakt. Chem. 1981, 323, 877; (c)
Issleib, K.; Doepfer, K.-P.; Balszuweit, A. Z. Natur-
forsch. B Anorg. Chem. Org. Chem. 1981, 36, 1392; (d)
Kabachnik, M. I.; Medwed’, T. Ya. Izv. Akad. Nauk
SSSR Ser. Khim. 1953, 868; Kabachnik, M. I.; Medwed’,
T. Ya. Dokl. AN SSSR 1952, 83, 689; (e) Kreutzkamp,
N.; Cordes, G. Justus Liebigs Ann. Chem. 1959, 623, 103;
(f) Krzyzanowska, B.; Stec, W. J. Synthesis 1978, 521; (g)
Kudzin, Z. H.; Kotynski, A. Synthesis 1980, 1028; (h)
Kudzin, Z. H.; Majchrzak, M. W. J. Organomet. Chem.
1989, 376, 245; (i) Lukszo, J.; Tyka, R. Pol. J. Chem.
1978, 52, 959; (j) Lukszo, J.; Tyka, R. Synthesis 1977,
239; (k) Rachon, J.; Wasielewski, C. Rocz. Chem. 1975,
49, 397; (l) Takahashi, H.; Yoshioka, M.; Imai, N.;
Onimura, K.; Kobayashi, S. Synthesis 1994, 763; (m)
Topolski, M.; Rachon, J. Phosphorus, Sulfur Silicon
Relat. Elem. 1991, 55, 97; (n) Yamauchi, K.; Kinoshita,
M.; Imoto, M. Bull. Chem. Soc. Jpn. 1972, 45, 2528; (o)
Yuan, C.; Wang, G.; Chen, S. Synthesis 1990, 522.
3. The N-arylidene-1-amino-1-arylmethylphosphonates were
also described previously. See for examples: (a) Dehnel,
A.; Kanabus-Kaminska, J. M.; Lavielle, G. Can. J.