a
Table 3 The synthesis of 5-substituted 1H-tetrazoles with MZNSS
In conclusion, a simple and effective method for the synthesis
of 5-substituted 1H-tetrazoles from nitriles and sodium azide
has been developed using mesoporous ZnS nanospheres as a
catalyst. The heterogeneous catalyst MZNSS with high
surface area and fine mesoporous structure shows excellent
catalytic performance for various nitriles, and also is easy to
separate from the reaction mixture to be reused, the first time
this has been reported. The MZNSS catalyst is a good
candidate to substitute metal salts or other heterogeneous
catalysts and has potential value for industrial applications.
Financial support from the National Natural Science
Foundation of China under the Major Research Project
b
c
À3 À1d
Entry
1
Product
Yield [%]
TON
TOF/10
h
96
2.33
64.7
2
3
86
99
2.09
2.40
58.1
66.7
(
No. 90606005) and the Jiangsu Province Foundation of
Natural Science (BK2006717) is greatly appreciated.
Notes and references
4
5
98
93
2.38
2.26
66.1
62.8
1
(a) H. Xue, Y. Gau, B. Twamley and J. M. Shreeve, Chem. Mater.,
005, 17, 191; (b) H. Singh, A. S. Chala, V. K. Kapoor, D. Paul
and R. K. Malhotra, Prog. Med. Chem., 1980, 17, 151;
c) R. Huisgen, J. Sarer, H. J. Sturm and J. H. Markgraf, Chem.
Ber., 1960, 93, 2106; (d) D. Moderhack, J. Prakt. Chem., 1998, 340,
87; (e) V. A. Ostrovskii, M. S. Pevzner, T. P. Kofmna,
M. B. Sheherbinin and I. V. Tselinskii, Targets Heterocycl. Syst.,
999, 3, 467; (f) M. Hiskey, D. E. Chavez, D. L. Naud, S. F. Son,
2
(
6
6
98
2.38
66.1
1
H. L. Berghout and C. A. Bome, Proc. Int. Pyrotech. Semin., 2000,
27, 3; (g) R. G. Xiong, X. Xue and H. Zhao, Angew. Chem., Int.
Ed., 2002, 41, 3800; (h) Q. Ye, Y. M. Song and G. X. Wang, J. Am.
Chem. Soc., 2006, 128, 6554; (i) R. N. Bulter, in Comprehensive
Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees,
Pergamon, Oxford, 1996, vol. 4, p. 791.
7
8
99
76
2.40
1.84
66.7
51.1
2
(a) V. Aureggi and G. Sedelmeier, Angew. Chem., 2007, 119, 8592;
V. Aureggi and G. Sedelmeier, Angew. Chem., Int. Ed., 2007, 46,
9
95
2.30
63.9
8
1
440; (b) D. P. Curran, S. Hadida and S.-Y. Kim, Tetrahedron,
999, 55, 8997; (c) S. J. Wittenberger and B. G. Donner, J. Org.
Chem., 1993, 58, 4139; (d) B. E. Huff and M. A. Staszak,
Tetrahedron Lett., 1993, 34, 8011; (e) J. V. Duncia, M. E. Pierce
and J. B. Santella III, J. Org. Chem., 1991, 56, 2395.
1
0
>99
>2.40
>66.7
a
3 (a) Z. P. Demko and K. B. Sharpless, J. Org. Chem., 2001, 66,
945; (b) F. Himo, Z. P. Demko, L. Noodleman and
K. B. Sharpless, J. Am. Chem. Soc., 2002, 124, 12210;
Reaction conditions: benzonitrile (2.5 mmol), NaN
3
(5.4 mmol),
7
3
MZNSS (0.1 g) treated with 0.1 M HNO , DMF (5 ml), reaction time
b
c
36 h, 120 1C. Isolated yields. The moles of tetrazoles formed per
(
(
c) Z. P. Demko and K. B. Sharpless, Org. Lett., 2002, 4, 2525;
d) F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless,
d
mol catalyst. Rate of the formation of tetrazoles per mol catalyst per
unit time.
J. Am. Chem. Soc., 2003, 125, 9983.
4
5
J. Bonnamour and C. Bolm, Chem.–Eur. J., 2009, 15, 4543.
L. Bosch and J. Vilarrasa, Angew. Chem., 2007, 119, 4000;
L. Bosch and J. Vilarrasa, Angew. Chem., Int. Ed., 2007, 46, 3926.
In order to get an insight into the effect of starting materials
on the yield of 5-substituted 1H-tetrazoles, various nitriles
were used as the starting materials and the results are listed in
Table 3. Most of the nitriles gave excellent yields over 90%
and the highest yield >99% was obtained in the case of
6 D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo and L. Vaccoro,
J. Org. Chem., 2004, 69, 2896.
7
(a) B. S. Jursic and B. W. LeBlanc, J. Heterocycl. Chem., 1998, 35, 405;
b) B. W. LeBlanc and B. S. Jursic, Synth. Commun., 1998, 28, 3591.
(
8 B. Schmidt, D. Meid and D. Kieser, Tetrahedron, 2007, 63, 492.
9 (a) M. L. Kantam, K. B. Shiva Kumar and C. Sridhar, Adv. Synth.
Catal., 2005, 347, 1212; (b) M. L. Kantam, K. B. Shiva Kumar and
K. P. Raja, J. Mol. Catal. A: Chem., 2006, 247, 186;
4
-cyanopyridine as a starting material (entry 10), while the
relatively lower yield of 76% was obtained in the case of
benzyl cyanide (entry 8). The influence of the site of
substituents on the yield was inspected. When benzonitriles
with 3-chloro and 4-chloro substituents were used as the
starting materials, yields of >97% were achieved (entries 3, 4)
whereas 86% yield was obtained when 2-chlorobenzonitrile
was a starting reactant. Perhaps the chloro group in the
ortho-position hampered the tetrazole formation. Not only
the site of the substituents in benzonitrile, but also the
electron-donating or electron-withdrawing properties of the
substituents has a significant influence on the reaction yield.
The experimental results show that reaction yield is higher
with an electron-donating substituent than with an electron-
withdrawing one (entries 4, 5, 7).
(c) M. L. Kantam, V. Balasubrahmanyam and K. B. Shiva Kumar,
Synth. Commun., 2006, 36, 1809.
1
0 T. Jin, F. Kitahara, S. Kamijo and Y. Yamamoto, Tetrahedron
Lett., 2008, 49, 2824.
1
1 J. H. He, B. J. Li, F. S. Chen, Z. Xu and G. Yin, J. Mol. Catal. A:
Chem., 2009, 304, 135.
12 B. J. Li, L. M. Lang, Z. Xu and G. Yin, unpublished work.
1
3 J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan
and C. L. Bai, Angew. Chem., Int. Ed., 2005, 44, 1269.
1
4 (a) J. H. Bang, R. J. Helmich and K. S. Suslick, Adv. Mater., 2008, 20,
2599; (b) S. Xiong, B. Xi, C. Wang, D. Xu, X. Feng, Z. Zhu and
Y. Qian, Adv. Funct. Mater., 2007, 17, 2728; (c) H. Fujiwara,
H. Hosokawa, K. Murakoshi, Y. Wada and S. Yanagida, Langmuir,
1998, 14, 5154; (d) S. Marinkovic and N. Hoffmann, Eur. J. Org.
Chem., 2004, 3102; (e) A. Kudo and M. Sekizawa, Chem. Commun.,
2000, 1371; (f) O. Hamanoi and A. Kudo, Chem. Lett., 2002, 838.
4
50 | Chem. Commun., 2010, 46, 448–450
This journal is ꢀc The Royal Society of Chemistry 2010