3
,4
Dual Functionalities of Hydrogen-Bonding
Self-Assembled Catalysts in Chelation-Assisted
Hydroacylation
tion and suppresses decarbonylation. This protocol was
further applied to the use of primary alcohol instead of
aldehyde.
3
,5
The recovery and reuse of transition metal catalysts have
recently attracted much attention in organometallic chemistry.
6
Jung-Woo Park, Ji-Hye Park, and Chul-Ho Jun*
Various methods using supports such as hyperbranched poly-
7
8
9
mers, dendrimers, and hybrid materials or tagging the catalyst
Department of Chemistry, Center for BioactiVe Molecular
Hybrid (CBMH), Yonsei UniVersity, Seoul 120-749,
Republic of Korea
10
to the solid or soluble supports have been developed. In our
first attempt to recycle hydroacylation catalysts, we demonstrated
the reuse of a rhodium complex by employing polystyrene-based
phosphine in which the catalytic reaction showed low reactivity
compared with the corresponding homogeneous catalytic reac-
11
tion. Covalently bonded solid-supported catalysts often suffer
from low efficiency because of reduced homogeneity during
the reaction. Here we wish to report a new recyclable self-
assembling organic catalyst capable of reversibly binding with
the metal-phosphine ligand.
ReceiVed April 21, 2008
Hydrogen bonding is useful here since the adducts show
reversible temperature-dependent dissociation on heating. On
the basis of this phenomenon, we have developed a hydrogen-
bond-controlled system for the recycling catalysts. For example,
a hydrogen-bonding mixed solvent system, consisting of 4,4′-
dipyridyl and phenol, was devised for recovery of organic and
3
,12
organometallic catalysts.
Another interesting system is a
supported recyclable catalyst system consisting of a barbiturate
bearing a phosphine ligand (BA-PPh2, 1a) with Rh(I), one
connecting a 2-aminopyridin-4-yl group (BA-2-AP, 1b), and
A recyclable catalyst for chelation-assisted hydroacylation
of an olefin with primary alcohol was developed using
hydrogen-bonding self-assembled catalysts consisting of 2,6-
diaminopyridine and barbiturate phosphine-rhodium(I) com-
plex. Upon heating, these two catalysts act as homogeneous
catalysts due to cleavage of the hydrogen bond, and these
associate to form supramolecular assemblies via hydrogen
bonding that can be separated from immiscible product phase
upon cooling after the reaction.
5
-hexyl-2,4,6-triaminopyrimidine (TP, 2a) as a polymeric
hydrogen-bonding mediator for hydroacylation as shown in
3,13
Scheme 1.
without organic catalyst BA-2-AP (1b), hydroacylation of
-alkene with benzyl alcohol could be achieved in the presence
However, it was unexpectedly found that, even
1
(
3) Our recent account on chelation-assisted C-H and C-C bond activation
and its application to recyclable catalysis: Park, Y. J.; Park, J.-W.; Jun, C.-H.
Acc. Chem. Res. 2008, 41, 222.
(4) (a) Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200. (b)
Jun, C.-H.; Lee, D.-Y.; Lee, H.; Hong, J.-B. Angew. Chem., Int. Ed. 2000, 39,
070. (c) Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chem.—Eur. J. 2002, 8, 2423.
Transition-metal-catalyzed activation of C-H bonds is
considered to be a good method for generating new C-C
3
(d) Jun, C.-H.; Jo, E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869.
1
(5) (a) Jun, C.-H.; Huh, C.-W.; Na, S.-J. Angew. Chem., Int. Ed. 1998, 37,
bonds in organic synthesis. In particular, hydroacylation is
1
45. (b) Jun, C.-H.; Hwang, D.-C. Polymer 1998, 39, 7143.
(6) Special issue on recoverable catalysts and reagents: Chem. ReV. 2002,
02, 3215-3892.
a powerful tool for the direct synthesis of ketones from
2
1
aldehyde and alkene in an atom-economical way. We have
(7) (a) Bergbreiter, D. E. Catal. Today 1998, 42, 389. (b) Bergbreiter, D. E.;
developed an efficient chelation-assisted hydroacylation using
a cocatalyst system consisting of a rhodium complex and
Osburn, P. L.; Liu, Y.-S. J. Am. Chem. Soc. 1999, 121, 9531. (c) Wentworth,
P., Jr.; Janda, K. D. Chem. Commun. 1999, 1917. (d) Buchmeiser, M. R.; Wurst,
K. J. Am. Chem. Soc. 1999, 121, 11101. (e) Schlenk, C.; Kleij, A. W.; Frey, H.;
van Koten, G. Angew. Chem., Int. Ed. 2000, 39, 3445. (f) Bergbreiter, D. E.;
Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058. (g)
Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123,
11105.
2
-amino-3-picoline, which facilitates the C-H bond activa-
(
1) (a) Crabtree, R. H. Chem. ReV. 1985, 85, 245. (b) Shilov, A. E.; Shul’pin,
G. B. Chem. ReV. 1997, 97, 2879. (c) Dyker, G. Angew. Chem., Int. Ed. 1999,
3
8, 1698. (d) Murakami, M.; Ito, Y. In ActiVation of UnreactiVe Bonds and
(8) Recent review on dendrimers in catalysis: Oosterom, G. E.; Reek, J. N. H.;
Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001, 40,
1829.
Organic Synthesis; Murai, S. Ed.; Springer: Berlin, 1999; p 97. (e) Kakiuchi,
F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (f) Ritleng, V.; Sirlin, C.; Pfeffer,
M. Chem. ReV. 2002, 102, 1731. (g) Labinger, J. A.; Bercaw, J. E. Nature 2002,
(9) Lindner, E.; Schneller, T.; Auer, F.; Mayer, H. A. Angew. Chem., Int.
Ed. 1999, 38, 2154.
4
17, 507. (h) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (i)
Godula, K.; Sames, D. Science 2006, 312, 67.
2) (a) Willis, M. C.; McNally, S. J.; Beswick, P. J. Angew. Chem., Int. Ed.
004, 43, 340. (b) Willis, M. C.; Randell-Sly, H. E.; Woodward, R. L.; Currie,
(10) (a) Yoshida, J.-i.; Itami, K. Chem. ReV. 2002, 102, 3693. (b) de Groot,
D.; de Waal, B. F. M.; Reek, J. N. H.; Schenning, A. P. H. J.; Kamer, P. C. J.;
Meijer, E. W.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2001, 123, 8453.
(c) Chen, R.; Bronger, R. P. J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.;
Reek, J. N. H. J. Am. Chem. Soc. 2004, 126, 14557. (d) Yang, J.; Ding, S.;
Radosz, M.; Shen, Y. Macromolecules 2004, 37, 1728. (e) Davies, H. M. L.;
Walji, A. M.; Nagashima, T. J. Am. Chem. Soc. 2004, 126, 4271.
(11) Jun, C.-H.; Hong, H.-S.; Huh, C.-W. Tetrahedron Lett. 1999, 40, 8897.
(12) Chang, D.-H.; Lee, D.-Y.; Hong, B.-S.; Choi, J.-H.; Jun, C.-H. J. Am.
Chem. Soc. 2004, 126, 424.
(
2
G. S. Org. Lett. 2005, 7, 2249. (c) Kokubo, K.; Matsumasa, K.; Miura, M.;
Nomura, M. J. Org. Chem. 1997, 62, 4564. (d) Tanaka, M.; Imai, M.; Yamamoto,
Y.; Tanaka, K.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Org.
Lett. 2003, 5, 1365. (e) Imai, M.; Tanaka, M.; Tanaka, K.; Yamamoto, Y.; Imai-
Ogata, N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. J. Org.
Chem. 2004, 69, 1144. (f) Tanaka, K.; Tanaka, M.; Suemune, H. Tetrahedron
Lett. 2005, 46, 6053.
5
598 J. Org. Chem. 2008, 73, 5598–5601
10.1021/jo800862q CCC: $40.75 2008 American Chemical Society
Published on Web 06/21/2008