Organic Letters
Letter
(2) (a) Wellington, W. K.; Ooi, C. H.; Benner, S. A. Nucleosides,
Nucleotides, Nucleic Acids 2009, 28, 275−291. (b) Kim, H.-J.; Leal, N. A.;
Benner, S. A. Bioorg. Med. Chem. 2009, 17, 3728−3732. (c) Lu, J.; Li, N.-
S.; Koo, S. C.; Piccirilli, J. A. J. Org. Chem. 2009, 74, 8021−8030.
(3) von Krosigk, U.; Benner, S. A. J. Am. Chem. Soc. 1995, 117, 5361−
5362.
the nucleobases, these data suggested that there were small
structural differences between PNA-aPh/DNA-G and PNA-C/
DNA-G. Possibly, the base stacking around the aPh residue may
change.
Similarly, the CD spectra of PNA-PhO, PNA-PzO, and PNA-T
were compared in the presence of DNA-A. The mixture of PNA-
T and DNA-A showed a major positive band at around 260 nm
with a small shoulder at around 280 nm, a negative band at
around 240 nm, and a positive band at around 220 nm. Similarly,
PNA-PhO/DNA-A and PNA-PzO/DNA-A showed two positive
bands at around 270 and 220 nm and a negative band at around
220 nm. These data suggested the formation of the PNA/DNA
duplex even in the presence of modified bases such as PhO and
PzO.
(4) Ben-Hattar, J.; Jirincy, J. J. Org. Chem. 1986, 51, 3211−3213.
̌
(5) (a) Sorm, F.; Vesely, J. Neoplasma 1968, 15, 339−343. (b) Leone,
G.; Voso, M. T.; Teofoli, L.; Lubbert, M. Clin. Immunol. 2003, 109, 89−
102. (c) Beisler, J. A. J. Med. Chem. 1978, 21, 204−208.
(6) (a) Ono, A.; Ts’O, P. O. P.; Kan, L.-S. J. Am. Chem. Soc. 1991, 113,
4032−4033. (b) Mayer, A.; Haberli, A.; Leumann, C. J. Org. Biomol.
̈
Chem. 2005, 3, 1653−1638. (c) Shahid, K. A.; Majumdar, A.; Alam, R.;
Liu, S.-T.; Kuan, J. Y.; Sui, X.; Cuenoud, B.; Glazer, P. M.; Miller, P. S.;
Seidman, M. M. Biochemistry 2006, 45, 1970−1978.
(7) Chen, D. L.; McLaughlin, L. W. J. Org. Chem. 2000, 65, 7468−
7474.
In conclusion, we successfully synthesized peptide nucleic
acids incorporating aPz or aPh as a cytosine analog and PzO or
PhO as a thymine analog. The PNA having one of these bases
formed a duplex with complementary DNAs with lower affinity
than that of the canonical PNA having thymine or cytosine.
However, in the cases of PNA-aPz and PNA-PzO, these PNAs
formed more stable duplexes with DNA-G and DNA-A,
respectively, probably due to the formation of Watson−Crick-
like base pairs. Thus, in terms of base recognition ability, our data
suggested that aPz and PzO may replace cytosine and thymine,
respectively. As reported by Romesberg and co-workers,12 the
endocyclic nitrogen at the α position relative to the glycosidic
linkage can form a hydrogen bond with the amino acid residues
of enzymes in DNA polymerase reactions. Therefore, nucleoside
triphosphates having aPz or PzO as base surrogates may be good
substrates for DNA polymerase reactions. If so, such molecules
may be useful for the development of new anticancer or antiviral
agents. We are now studying the synthesis of such nucleosides
having aPz or PzO; the results will be reported elsewhere.
(8) Maeba, I.; Suzuki, M.; Hara, O.; Takeuchi, T.; Iijima, T.; Furukawa,
H. J. Org. Chem. 1987, 52, 4521−4526.
(9) Maeba, I.; Iijima, T.; Matsuda, Y.; Ito, C. J. Chem. Soc., Perkin Trans.
1 1990, 73−76.
(10) Gupta, P.; Zengeya, T.; Rozners, E. Chem. Commun. 2011, 47,
11125−11127.
(11) Olsen, A. G.; Dahl, O.; Nielsen, P. E. Bioorg. Med. Chem. Lett.
2004, 14, 1551−1554.
(12) Kim, Y.; Laconte, A. M.; Hari, Y.; Romesberg, F. E. Angew. Chem.,
Int. Ed. 2006, 45, 7809−7812.
(13) Ingham, C. F.; Massy-Westropp, R. A.; Reynolds, G. D.; Thorpe,
W. D. Aust. J. Chem. 1975, 28, 2499−2510.
(14) Stafforst, T.; Diederichsen, U. Eur. J. Org. Chem. 2007, 681−688.
(15) (a) Agrawal, M.; Kharkar, P.; Moghe, S.; Mahajan, T.; Deka, V.;
Thakkar, C.; Nair, A.; Mehta, C.; Bose, J.; Kulkarni-Almeida, A.; Bhedi,
D.; Vishwakarma, R. A. Bioorg. Med. Chem. Lett. 2013, 23, 5740−5743.
(b) Mylari, B. L.; Beyer, T. A.; Scott, P. J.; Aldinger, C. E.; Dee, M. F.;
Sielgel, T. W.; Zembrowski, W. J. J. Med. Chem. 1992, 35, 457−465.
(c) Mylari, B. L.; Larson, E. R.; Beyer, T. A.; Zembrowski, W. J.;
Aldinger, C. E.; Dee, M. F.; Siegel, T. W.; Singleton, D. H. J. Med. Chem.
1991, 34, 108−122.
ASSOCIATED CONTENT
* Supporting Information
■
(16) (a) Chattopadhyay, B.; Vera, C. I. R.; Chuprakov, S.; Gevorgyan,
V. Org. Lett. 2010, 12, 2166−2169. (b) Chan, J.; Faul, M. Tetrahedron
Lett. 2006, 47, 3361−3363. (c) Lowe-Ma, C. K.; Nissan, R. A.; Wilson,
W. S. J. Org. Chem. 1990, 55, 3755−3761.
S
The synthetic procedures for newly synthesized compounds and
their NMR data are provided. This material is available free of
(17) Kandalkar, R. S.; Kaduskar, D. R.; Ramaiah, A. P.; Barawkar, A. D.;
Bhyniya, D.; Deshpande, M. A. Tetrahedron Lett. 2013, 54, 414−418.
(18) Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science 1991,
254, 1497−1500.
AUTHOR INFORMATION
Corresponding Authors
■
(19) Tomac, S.; Sarkar, M.; Ratilainen, T.; Wittung, P.; Nielsen, P. E.;
Norden, B.; Graslund, A. J. Am. Chem. Soc. 1996, 118, 5544−5552.
́
̈
Notes
(20) Faccini, A.; Tortori, A.; Tedeschi, T.; Sforza, S.; Tonelli, R.;
Pession, A.; Corradini, R.; Marchelli, R. Chirality 2008, 20, 494−500.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant No.
26288075.
■
REFERENCES
(1) (a) Joubert, N.; Pohl, R.; Klepetar
■
́
o
̌
va,
́
B.; Hocek, M. J. Org. Chem.
2007, 72, 6797−6805. (b) Reese, C. B.; Wu, Q. Org. Biomol. Chem.
2003, 1, 3160−3172. (c) Matulic-Adamic, J.; Biegelman, L. Tetrahedron
Lett. 1997, 38, 1669−1672. (d) Hirao, I.; Ohtsuki, T.; Fujiwara, T.;
Mitsui, T.; Yokogawa, T.; Ohkuni, T.; Nakayama, H.; Takio, K.; Yabuki,
T.; Kigawa, T.; Kodama, K.; Yokogawa, T.; Nishikawa, K.; Yokoyama, S.
Nat. Biotechnol. 2002, 20, 177−182. (e) Chapuis, H.; Kubelka, T.;
Joubert, N.; Pohl, R.; Hocek, M. Eur. J. Org. Chem. 2012, 1759−1767.
(f) Hildbrand, S.; Blaser, A.; Parel, S. P.; Leumann, C. J. J. Am. Chem. Soc.
1997, 119, 5499−5511.
1612
Org. Lett. 2015, 17, 1609−1612