2516
T. Razzaq, C. O. Kappe / Tetrahedron Letters 48 (2007) 2513–2517
We are indebted to Professor W. Stadlbauer for helpful
suggestions and comments and to Hana Prokopcov a´ for
experimental assistance.
Supplementary data
Supplementary data associated with this article (experi-
References and notes
1
. (a) Books: Microwaves in Organic Synthesis, 2nd ed.;
Loupy, A., Ed.; Wiley-VCH: Weinheim, 2006; (b) Kappe,
C. O.; Stadler, A. Microwaves in Organic and Medicinal
Chemistry; Wiley-VCH: Weinheim, 2005; (c) Microwave-
Assisted Organic Synthesis; Lidstr o¨ m, P., Tierney, J. P.,
Eds.; Blackwell: Oxford, 2005; (d) Hayes, B. L. Microwave
Synthesis: Chemistry at the Speed of Light; CEM:
Matthews, NC, 2002.
Scheme 2.
involving variation of the solvent, amount of base, reac-
tion time, and temperature, we arrived at microwave-
assisted conditions that allowed the ring-opening step
to proceed within only 4 min (including a 3 min heating
ramp) providing a similar high product yield. One of the
best set of conditions was found to involve ethanol as
solvent, 4.0 equiv of base and 190 ꢁC reaction tempera-
ture. After successful optimization on a small scale in a
sealed microwave vessel, the preparation of 3-acetylqui-
nolone 3 was scaled to 100 mL reaction volume (0.04
mol) in a high-pressure microwave autoclave system
2
3
. Recent reviews: (a) Kappe, C. O. Angew. Chem., Int. Ed.
2
004, 43, 6250; (b) Hayes, B. L. Aldrichim. Acta 2004, 37,
6
6; (c) De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem.
Soc. Rev. 2005, 34, 164.
. (a) Stadler, A.; Pichler, S.; Horeis, G.; Kappe, C. O.
Tetrahedron 2002, 58, 3177; (b) Lange, J. H. M.; Verveer,
P. C.; Osnabrug, S. J. M.; Visser, G. M. Tetrahedron Lett.
2001, 42, 1367; (c) Rivkin, A.; Adams, B. Tetrahedron
Lett. 2006, 47, 2395.
(
Milestone HPR 100 mL rotor), which tolerated the
4
5
6
. (a) Strohmeier, G. A.; Kappe, C. O. J. Comb. Chem. 2002,
ca. 24 bar reaction pressure resulting from the super-
heated ethanol. Using these conditions, the desired
4, 151; (b) Vo-Tanh, G.; Lahrache, H.; Loupy, A.; Kim,
I.-J.; Chang, D.-H.; Jun, C.-H. Tetrahedron 2004, 60,
3
-acetylquinolone 3 was produced in 93% isolated yield.
5
4
539; (c) Kim, Y. J.; Varma, R. S. Tetrahedron Lett. 2004,
5, 7205; (d) Nosse, B.; Schall, A.; Jeong, W. B.; Reiser, O.
Finally, the deacetylation 3!1 was performed using
Adv. Synth. Catal. 2005, 347, 1869.
7
0% sulfuric acid at 200 ꢁC in 4 min (including a 2 min
. For reviews on microwave-assisted synthesis using open
vessel technology in conjunction with organic solvents,
see: (a) Bose, A. K.; Banik, B. K.; Lavlinskaia, N.;
Jayaraman, M.; Manhas, M. S. Chemtech 1997, 27, 18; (b)
Bose, A. K.; Manhas, M. S.; Ganguly, S. N.; Sharma, A.
H.; Banik, B. K. Synthesis 2002, 1578.
. For recent examples of large scale open vessel microwave
synthesis in dedicated multimode instruments, see: (a)
Leadbeater, N. E.; Williams, V. A.; Barnard, T. M.;
Collins, M. J., Jr. Org. Proc. Res. Dev. 2006, 10, 833; (b)
Leadbeater, N. E.; Williams, V. A.; Barnard, T. M.;
Collins, M. J., Jr. Synlett 2006, 2953; (c) Barnard, T. M.;
Vanier, G. S.; Collins, M. J., Jr. Org. Proc. Res. Dev. 2006,
10, 1233; For a review on microwave synthesis on large
scale, see: (d) Kremsner, J. M.; Stadler, A.; Kappe, C. O.
Top. Curr. Chem. 2006, 266, 233.
heating ramp) on a 0.035 mol scale (20 mL). The iso-
lated product yield of 95% compared well with the tra-
ditional thermal protocol employing 90% sulfuric acid
at 140 ꢁC for 15 min.
8
In conclusion we have demonstrated that the combina-
tion of microwave heating under atmospheric pressure
conditions with simultaneous product distillation is
a very valuable—but underutilized—technology for
organic synthesis. In the specific example provided
herein, the cyclocondensation of N-methylaniline with
diethyl malonate leading to pyrano[3,2-c]quinolone 2
must be carried out under these unusual reaction condi-
tions. The conversion in this transformation can be
conveniently monitored by the amount of the formed
ethanol collected in the receiver and the rate of the
reaction can be controlled by the level of the applied
microwave power. Using more common sealed vessel
microwave technology virtually no reaction takes place.
7
. The only exception we are aware of involves the micro-
wave-assisted distillation of essential oils. For more
details, see: Chemat, F.; Lucchesi, M.-E. In Microwaves
in Organic Synthesis; 2nd ed.; Loupy, A., Ed., Wiley-VCH:
Weinheim, 2006, Chapter 2, pp 959–985.
8
. (a) Roschger, P.; Stadlbauer, W. Liebigs Ann. Chem. 1990,
8
21; For the original synthesis of 2, see: (b) Bowman, R.
E.; Campbell, A.; Tanner, E. M. J. Chem. Soc 1959, 444.
. For related examples, see: (a) Roschger, P.; Fiala, W.;
Stadlbauer, W. J. Heterocycl. Chem. 1992, 29, 225; (b)
Kappe, T.; Aigner, R.; Hohengassner, P.; Stadlbauer, W.
J. Prakt. Chem. 1994, 336, 596; (c) Stadlbauer, W.;
Badawey, E.-S.; Hojas, G.; Roschger, P.; Kappe, T.
Molecules 2001, 6, 345.
9
Acknowledgments
This work was supported by a grant from the Christian
Doppler Society (CDG). T.R. thanks the Higher Educa-
tion Commission of Pakistan for a Ph.D. scholarship.