Journal of the American Chemical Society
Communication
other two tumors decreased from ∼150 to ∼3 mm3 (Figure 3b−
d). The tumor growth of mice treated with H2DBP was slightly
suppressed after PDT, however, accelerated after 5 days and
exhibited no difference to the control group at the end point.
After local administration, DBP−UiO could be efficiently
internalized by the tumor cells and induce cytotoxicity upon
irradiation, while the free ligand might be cleared away from the
tumor sites before irradiation. No skin/tissue damage was
observed after PDT treatment on all mice (Figure 3c).
Histologies of tumor slices showed macrophage infiltration in
tumors of the DBP−UiO treated group and indicated that
significant fractions of tumor cells were undergoing apoptosis/
necrosis (Figure S21, SI).
(5) (a) Wang, A. Z.; Langer, R.; Farokhzad, O. C. Annu. Rev. Med.
2012, 63, 185−198. (b) Maeda, H.; Sawa, T.; Konno, T. J. Controlled
Release 2001, 74, 47−61. (c) Fang, J.; Nakamura, H.; Maeda, H. Adv.
Drug Delivery Rev. 2011, 63, 136−151.
(6) (a) Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J.
L.; Chan, W. C.; Cao, W.; Wang, L. V.; Zheng, G. Nat. Mater. 2011, 10,
324. (b) Jin, C. S.; Cui, L.; Wang, F.; Chen, J.; Zheng, G. Adv. Healthcare
Mater. 2014, 3, 1240−1249. (c) Samia, A. C.; Chen, X.; Burda, C. J. Am.
Chem. Soc. 2003, 125, 15736−15737. (d) Cheng, Y.; Doane, T. L.;
Chuang, C. H.; Ziady, A.; Burda, C. Small 2014, 10, 1799−1804.
(e) Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Chem. Soc.
Rev. 2011, 40, 44−56. (f) Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.;
Warsen, A.; Li, Z.-Y.; Zhang, H.; Xia, Y.; Li, X. Nano Lett. 2007, 7, 1318.
(g) Wang, Y.; Black, K. C.; Luehmann, H.; Li, W.; Zhang, Y.; Cai, X.;
Wan, D.; Liu, S.-Y.; Li, M.; Kim, P. ACS Nano 2013, 7, 2068. (h) Loo, C.;
Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5, 709−711.
(i) Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41, 1842−1851.
(j) Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.;
Sajjad, M.; Prasad, P. N. ACS Nano 2010, 4, 699−708. (k) Carter, K. A.;
Shao, S.; Hoopes, M. I.; Luo, D.; Ahsan, B.; Grigoryants, V. M.; Huang,
H.; Zhang, G.; Pandey, R. K. Nat. Commun. 2014, 5, 3546.
(7) (a) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.;
Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257−1283. (b) Spokoyny, A.
M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Chem. Soc. Rev. 2009, 38, 1218−
1227. (c) Rieter, W. J.; Taylor, K. M.; An, H.; Lin, W. J. Am. Chem. Soc.
2006, 128, 9024−5. (d) Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin,
W. J. Am. Chem. Soc. 2008, 130, 11584−11585. (e) deKrafft, K. E.; Xie,
Z.; Cao, G.; Tran, S.; Ma, L.; Zhou, O. Z.; Lin, W. Angew. Chem., Int. Ed.
2009, 48, 9901−4. (f) Taylor-Pashow, K. M.; Della Rocca, J.; Xie, Z.;
Tran, S.; Lin, W. J. Am. Chem. Soc. 2009, 131, 14261−3. (g) Horcajada,
P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.;
Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.;
Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.;
Gref, R. Nat. Mater. 2010, 9, 172. (h) Della Rocca, J.; Liu, D.; Lin, W.
Acc. Chem. Res. 2011, 44, 957−968. (i) Liu, D.; Huxford, R. C.; Lin, W.
Angew. Chem., Int. Ed. 2011, 50, 3696−3700. (j) He, C.; Lu, K.; Liu, D.;
Lin, W. J. Am. Chem. Soc. 2014, 136, 5181−5184. (k) Morris, W.; Briley,
W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. J. Am. Chem. Soc.
2014, 136, 7261−7264.
In summary, we have designed and synthesized a stable and
porous DBP−UiO NMOF with an ideal combination of
structural regularity and nanoplate morphology for highly
effective PDT of resistant head and neck cancer. As a result of
site isolation of DBP ligands, enhanced intersystem crossing by
Hf clusters, and facile 1O2 diffusion out of a porous nanoplate, the
NMOF works as an efficient PDT photosensitizer, as
1
demonstrated by both O2 generation efficiency measurements
and in vitro cytotoxicity assays. In vivo PDT efficacy studies with
subcutaneous xenograft murine models demonstrated 50 times
tumor volume reduction in half of the mice and complete tumor
eradication in the other half of the mice that were treated with
DBP−UiO. In comparison, no therapeutic effect was observed in
the mice treated with H2DBP. The facile structural and
compositional tunability of NMOFs should allow further tuning
of other properties to afford a new generation of highly potent
PDT agents for treating resistant cancers in the clinic.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details for the synthesis and characterization of
H2DBP, DBP−UiO, and Zn−DPDBP−UiO, photochemical
properties and singlet oxygen generation, cellular uptake, and in
vitro and in vivo efficacy studies. This material is available free of
(8) He, C.; Lu, K.; Lin, W. J. Am. Chem. Soc. 2014, 136, 12253−12256.
(9) (a) Gao, W.-Y.; Chrzanowski, M.; Ma, S. Chem. Soc. Rev. 2014, 43,
5841−5866. (b) Lee, D. H.; Kim, S.; Hyun, M. Y.; Hong, J. Y.; Huh, S.;
Kim, C.; Lee, S. J. Chem. Commun. 2012, 48, 5512−5514. (c) Feng, D.;
Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem., Int.
Ed. 2012, 124, 10453−10456. (d) Zhang, M.; Gu, Z.-Y.; Bosch, M.;
Perry, Z.; Zhou, H.-C. Coord. Chem. Rev. 2014, DOI: 10.1016/
j.ccr.2014.05.031.
AUTHOR INFORMATION
Corresponding Author
■
(10) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850−13851.
(11) (a) Kanofsky, J. R. Photochem. Photobiol. 2011, 87, 14−17.
(b) Stdenis, C. E.; Fell, C. J. D. Can. J. Chem. Eng. 1971, 49, 885.
(c) Merkel, P. B.; Kearns, D. R. J. Am. Chem. Soc. 1972, 94, 7244−7253.
(d) Rodgers, M. A. J.; Snowden, P. T. J. Am. Chem. Soc. 1982, 104,
5541−5543. (e) Snyder, J. W.; Skovsen, E.; Lambert, J. D. C.; Ogilby, P.
R. J. Am. Chem. Soc. 2005, 127, 14558−14559.
Author Contributions
†These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge NIH (UO1-CA151455) for funding support.
We thank Dr. Cheng Wang, Teng Zhang, Zekai Lin, Christopher
Poon, Carter Abney, and Seth Barrett for experimental help. We
acknowledge the use of the Biophysical Dynamics NanoBiology
Facility, which is partially funded by NIH Grant 1S10RR026988-
01.
(12) Moan, J.; Berg, K. Photochem. Photobiol. 1991, 53, 549−553.
(13) Scandola, F.; Chiorboli, C.; Prodi, A.; Iengo, E.; Alessio, E. Coord.
Chem. Rev. 2006, 250, 1471−1496.
(14) Schoder, H. Nuclear Oncology; Springer: New York, 2013; pp
̈
269−295.
(15) (a) Biel, M. A. Photodynamic Therapy; Springer: New York, 2010;
pp 281−293. (b) Vesper, B. J.; Colvard, M. D., Head & Neck Cancer:
Current Perspectives, Advances, and Challenges; Springer: New York,
2013; pp 649−676.
REFERENCES
■
(1) Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer
2003, 3, 380−387.
(16) Henderson, B. W.; Waldow, S. M.; Potter, W. R.; Dougherty, T. J.
Cancer Res. 1985, 45, 6071−6077.
(2) Pass, H. I. J. Natl. Cancer Inst. 1993, 85, 443−456.
(3) Allison, R. R.; Sibata, C. H. Photodiagn. Photodyn. 2010, 7, 61−75.
(4) Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.-L.; Guillemin, F.;
Barberi-Heyob, M. Trends Biotechnol. 2008, 26, 612−621.
D
dx.doi.org/10.1021/ja508679h | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX