10.1002/anie.201803536
Angewandte Chemie International Edition
COMMUNICATION
The synthesized O-mannosyl glycans are well-defined and
closely related glycoforms (Fig 2), providing unique probes for
mining fine specificities of glycan-binding proteins (GBPs). As
Experimental Section
Detailed synthetic procedures, enzymatic reactions, microarray analysis,
nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry data, and NMR spectra for products are available in the
shown in Figure 5A
,
microarray analysis
(Supporting
Information III) showed that both Ricinus communis lectin I
(RCA-I) and Erythrina cristagalli lectin (ECA) strongly bound to
M010, consistent with its primary specificity towards terminal LN
supporting informationn.
epitope.[24] Moreover, ECA exhibited
a
broader specificity
towards all O-mannosyl glycans harboring a free terminal LN
M101 M201 M21X M301, and M31X), whereas RCA-I seems
to prefer terminal LN on the 1,6-branch (M301 and M21X) over
the 1,2-branch (M101 M201 M314 and M215) (Fig 5A). Such
Acknowledgements
(
,
,
,
The work was supported by National Institutes of Health
(U01GM116263 to P. G. Wang and L. Li). We are grateful to Z
Biotech LLC (Aurora, CO) for printing glycan microarrays
(supported by National Institute of Health under R43GM123820).
Mab(IIH6) was a kind gift from Dr. Kevin Campbell (HHMI,
University of Iowa). We thank Dr. Xi Chen from University of
California, Davis, for providing sialyltransferases. U. Westerlind
is grateful to the Ministerium für Kultur und Wissenschaft des
Landes Nordrhein-Westfalen and the Bundesministerium für
Bildung und Forschung.
,
,
a branch preference was also found for the anti-CD15s antibody
(specific to sLeX epitope), which bound to glycans that contain
sLeX on the 1,6-branch (M050
only on the 1,2-branch (M105
,
M3X5) but not to that with sLeX
, M2X5) (Fig 5B). On the other
hand, Aleuria aurantia lectin (AAL, specific to -Fuc) exhibited a
preference towards the 1,2-branch, as well as other fine
specificities (Supporting Information III, Fig S2).
ConA, an -Man specific lectin commonly used for enriching
tryptic O-mannosyl peptides, strongly bound to M100 but not to
other natural core M1 or any core M2 structures (Fig S3). It thus
can be speculated that detection or enrichment of O-mannosyl
glycans using ConA may miss a substantial amount of complex
structures. Interestingly, weak bindings of ConA to unnatural
Keywords: carbohydrates • chemoenzymatic synthesis •
glycosylation • microarrays • O-mannosyl glycans
[1]
[2]
a) T. Endo, J. Biochem. 2015, 157, 1; b) J. L. Praissman, L. Wells,
Biochemistry 2014, 53, 3066.
2,6-sialylated core M1 glycans (M103
, M103G) was observed
(Fig S3), suggesting that such modification may result in
T. Yoshida-Moriguchi, T. Willer, M. E. Anderson, D. Venzke, T. Whyte,
F. Muntoni, H. Lee, S. F. Nelson, L. Yu, K. P. Campbell, Science 2013,
341, 896.
conformational changes that facilitated ConA binding.
Anti-glycan antibodies, on the other hand, may present as
better detection tools. For example, anti-serum from two rabbits
[3]
[4]
C. M. Dobson, S. J. Hempel, S. H. Stalnaker, R. Stuart, L. Wells, Cell.
Mol. Life. Sci. 2013, 70, 2849.
(26559, 26560) that immunized with a core M2 glycan (M000
)
S. H. Stalnaker, K. Aoki, J. M. Lim, M. Porterfield, M. Liu, J. S. Satz, S.
Buskirk, Y. Xiong, P. Zhang, K. P. Campbell, H. Hu, D. Live, M.
Tiemeyer, L. Wells, J. Biol. Chem. 2011, 286, 21180.
conjugate bound to broad range of core M2-containing
a
glycopeptides regardless of varied peptide sequences.[10] We
further evaluated the anti-sera toward synthesized O-mannosyl
glycans. Our results showed that both sera exhibit binding
specificities towards core M2 O-mannosyl glycans that
[5]
[6]
M. O. Sheikh, S. M. Halmo, L. Wells, Glycobiology 2017, 27, 806.
M. B. Vester-Christensen, A. Halim, H. J. Joshi, C. Steentoft, E. P.
Bennett, S. B. Levery, S. Y. Vakhrushev, H. Clausen, Proc. Natl. Acad.
Sci. U.S.A. 2013, 110, 21018.
containing at least one free terminal GlcNAc residue (M000
M20X M30X) as well as the core M1 disaccharide M100 Fig
6C Fig S4). In addition, anti-sera from rabbit 26560 exhibited
,
[7]
a) Y. Zhang, C. Meng, L. Jin, X. Chen, F. Wang, H. Cao, Chem.
Commun. 2015, 51, 11654; b) J. Seifert, T. Ogawa, S. Kurono, Y. Ito,
Glycoconj. J. 2000, 17, 407; c) J. Seifert, T. Ogawa, Y. Ito, Tetrahedron
Lett. 1999, 40, 6803; d) I. Matsuo, M. Isomura, K. Ajisaka, Tetrahedron
Lett. 1999, 40, 5047; e) D. Live, L. Wells, G. J. Boons, Chembiochem
2013, 14, 2392.
,
(
,
comparable bindings to all those glycans, whereas anti-sera
from rabbit 26559 showed stronger binding to glycans contain a
free GlcNAc on the 1,6-branch (M20X) compared with binding
to the 1,2-branch (M100, M30X) (Fig S4). The results imply
[8]
[9]
J. Yu, U. Westerlind, Chembiochem 2014, 15, 939.
that antibodies generated from different hosts may posses
certain individual heterogeneity (or individual difference).
Nevertheless, our results revealed fine specificities of the anti-
sera towards O-mannosyl glycans. Comparing with ConA, these
anti-sera are advantageous in the detection of branched O-
mannosyl glycans.
In summary, by combining convergent chemical synthesis
with strictly programmed enzymatic synthesis in a stepwise
manner, an efficient scaffold synthesis/enzymatic extension
(SSEE) strategy was developed to access 45 mammalian O-
mannosyl glycans. Such unique glycoforms provide not only
standards for identifying O-mannosyl glycans and revealing their
biological roles, but also ideal probes for mining fine details of
protein-glycan interactions.
R. Sardzik, A. P. Green, N. Laurent, P. Both, C. Fontana, J. Voglmeir,
M. J. Weissenborn, R. Haddoub, P. Grassi, S. M. Haslam, G. Widmalm,
S. L. Flitsch, J. Am. Chem. Soc. 2012, 134, 4521.
[10] J. Yu, O. C. Grant, C. Pett, S. Stahl, R. J. Woods, U. Westerlind, Chem.
Eur. J. 2017, 23, 3466.
[11] S. M. Halmo, D. Singh, S. Patel, S. Wang, M. Edlin, G. J. Boons, K. W.
Moremen, D. Live, L. Wells, J. Biol. Chem. 2017, 292, 2101.
[12] S. Einarsson, B. Josefsson, S. Lagerkvist, J. Chromatogr. A 1983, 282,
609.
[13] K. Lau, V. Thon, H. Yu, L. Ding, Y. Chen, M. M. Muthana, D. Wong, R.
Huang, X. Chen, Chem. Commun. 2010, 46, 6066.
[14] G. Sugiarto, K. Lau, J. Qu, Y. Li, S. Lim, S. Mu, J. B. Ames, A. J. Fisher,
X. Chen, ACS Chem. Biol. 2012, 7, 1232.
[15] H. Yu, S. Huang, H. Chokhawala, M. Sun, H. Zheng, X. Chen, Angew.
Chem. Int. Ed. 2006, 45, 3938.
[16] S. W. Lin, T. M. Yuan, J. R. Li, C. H. Lin, Biochemistry 2006, 45, 8108.
This article is protected by copyright. All rights reserved.