S.-L. Ma et al. / Journal of Molecular Structure 733 (2005) 77–81
81
and LiC/KC by 1 and 2 are greater than those by 3, 4
and dibenzo-18-crown-6, showing the good selectivity
for LiC.
[7] R.M. Izatt, J.S. Bradshaw, S.N. Nielsen, J.D. Lamb, J.J. Christensen,
D. Sen, Chem. Rev. 85 (1985) 271.
[8] R.M. Izatt, K. Pawlak, J.S. Bradshaw, R.L. Bruening, Chem. Rev. 91
(1991) 1721.
[9] J.D. Lamb, J.J. Christensen, S.R. Izatt, K. Bedke, M.S. Astin,
R.M. Izatt, J. Am. Chem. Soc. 102 (1980) 3399.
Though variations in the stirring speed and other factors
do not permit precise comparisons of the transport efficiency
with other carriers, to our prepared compounds, the absolute
rates of transport are 10K8–10K7 mol/h, which are in fair
good agreement with those obtained in other laboratories
[10,24,25,28]. Compared with some macrocyclic ligands,
our synthesized compounds may decrease the absolute
transport rates to LiC, NaC and KC, but the two new
compounds 1 and 2 may enhance the selectivity for LiC,
while compounds 3 and 4 may enhance the selectivity for
NaC, therefore providing new efficient carriers for LiC and
NaC extraction, respectively.
[10] B. Zhao, Y.J. Wu, J.C. Tao, Polyhedron 15 (1995) 3557.
[11] J.C. Tao, Y.J. Wu, M. Li, Z.Y. Yu, Acta Chim. Sin. 59 (2001) 91.
[12] Y. Habata, T. Saeki, S. Akabori, X.X. Zhang, J.S. Bradshaw,
J. Heterocycl. Chem. 38 (2001) 253.
[13] K.W. Chi, H.C. Wei, T. Kottke, R.J. Lagow, J. Org. Chem. 61 (1996)
5684.
[14] N. Su, J.S. Bradshaw, P.B. Savage, K.E. Krakowiak, R.M. Izatt,
S.L.D. Wall, G.W. Gokel, Tetrahedron 55 (1999) 9737.
[15] S.L. Ma, W.X. Zhu, J. Mol. Struct. 643 (2002) 141.
[16] S.L. Ma, W.X. Zhu, M.Q. Xu, Y.L. Wang, Q.L. Guo, Y.C. Liu,
Polyhedron 22 (2003) 3249.
[17] S.L. Ma, W.X. Zhu, Q.L. Guo, Y.C. Liu, M.Q. Xu, Chin. J. Chem. 22
(2004) 69.
[18] S. Kulstad, L.A. Malmaston, Acta Chem. Scand. B33 (1979) 469.
[19] H.S. Grame, J.G. Rodney, Aust. J. Chem. 37 (1984) 959.
[20] J.F. Biernat, E. Luboch, Tetrahedron 40 (1984) 1927.
[21] G.M. Sheldrick, SHELXS-97 and SHELXL-97, University of
Gottingen, Germany, 1997.
Acknowledgements
We are grateful to the youth Foundation of Beijing Normal
University (No. 1077005) and the National Natural Science
Foundation of China (No. 20371009) for financial support.
[22] W.P. Li, S.L. Gong, X.F. Liu, X.R. Lu, H.S. Xu, Chem. J. Chin. Univ.
17 (1996) 501.
[23] R.A. Bartsch, E.G. Jeon, W. Walkowiak, W. Apostoluk, J. Membr.
Sci. 159 (1999) 123.
[24] M. Xu, K. Song, L.Z. Wu, L.P. Zhang, C.H. Tung, Chin. J. Chem. 20
(2002) 90.
References
[25] Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama,
J. Furukawa, J. Am. Chem. Soc. 98 (1976) 7414.
[26] X.-H. Yang, D.C. Craig, N. Kumar, D.B. Hibbert, J. Inclusion
Phenom. Macromol. Chem. 33 (1999) 135.
[1] J.S. Bradshaw, R.M. Izatt, Acc. Chem. Res. 30 (1997) 338.
[2] B.C. Pressman, in: G.L. Elchhorn (Ed.), Inorganic Biochemistry, vol.
1, American Elsevier, New York, 1973, pp. 203–226.
[3] E. Grell, T. Funck, F. Eggers, in: G. Eisenman (Ed.), Membranes, vol.
3, Marcel Dekker, New York, 1975, pp. 1–126.
[27] H. Tsukube, K. Takagi, T. Higashixama, T. Iwachido, H. Hayama,
J. Inclusion Phenom. 2 (1984) 103.
[28] J. Rebek Jr., R.V. Wattley, J. Am. Chem. Soc. 102 (1980) 4853.
[29] J.D. Lamb, R.M. Izatt, D.G. Garrick, J. Membr. Sci. 9 (1981) 83.
[30] M.C. Shen, Z.L. Wang, Q.H. Luo, X. Gao, G.Y. Lu, Acta Chim. Sin.
49 (1991) 718.
[4] M. Newcomb, D.J. Cram, J. Am. Chem. Soc. 97 (1975) 1257.
[5] E.S. Matulevicius, N.N. Li, Sep. Purif. Meth. 4 (1975) 73.
[6] D.Y. Kong, L.H. Meng, J. Ding, Y.Y. Xie, X.Y. Huang, Polyhedron
19 (2000) 217.