Fig. 3 View of the coordination polyhedra in [Y2(L)(OH)]3+
.
3.4295(19) Å, which is considerably shorter than distances
reported for binuclear lanthanide complexes.13 The three
bridging oxygen atoms in [Y2(L)(OH)]3+ form an almost
Fig. 1 Structure of [Cd2(L)](NO3)2·2MeOH with numbering scheme
adopted. Nitrate anions and hydrogen atoms on carbon atoms have been
omitted for clarity. Hydrogen bonds and the face to face p–p interaction are
drawn as single and double dashed lines, respectively. Displacement
ellipsoids are drawn at 50% probability. Symmetry operation: i = 2x + 1,
y, 2z + 1/2.
equilateral triangle [O(21)…O(21i) 2.747(13)
Å
and
O(21)…O(1) 2.721(12) Å, O(1)–O(21)–O(21i) 59.7(2)° and
O(21)–O(1)–O(21i) 60.6(4)°], and the two YIII ions lie 1.716(5)
Å out of this O3 plane. Therefore, the coordination polyhedron
at each metal ion can best be described as monocapped distorted
dodecahedral (Fig. 3).
The work described herein represents the first example of a
phenol-based compartmental system incorporating [9]aneN3 to
afford a large cofacial macropolycycle capable of forming
binuclear complexes in which the two metal centres can be
segregated or encapsulated. Furthermore, since H2L can be
synthesised directly without using templating metal ions,
heterodinuclear complexes may be targeted, and this is
currently under investigation.
centres, which are, therefore, segregated each within its own
N5O-donor chamber [Cd…Cd distance 7.017(1) Å].
Reaction of H2L with Y(NO3)3·6H2O in a 1+2 molar ratio
under the same conditions as above afforded yellow crystals.
The single crystal X-ray structure of [Y2(L)(OH)][Y(NO3)4-
(MeOH)2](NO3)2·2MeOH shows‡ the complex cation lying
across a two-fold rotation axis with [Y(NO3)4(MeOH)2]2 and
two nitrate counter-anions (Fig. 2). The two YIII centres in the
cation lie within the two N5O donating chambers of L22 and are
bridged not only by the phenolate oxygen atoms but also by a
hydroxy group. To our knowledge the cation [Y2(L)(OH)]3+
represents one of the few structurally characterised homo-
binuclear lanthanide complexes with phenol-based compart-
mental macrocycles.9,10 Each YIII ion in [Y2(L)(OH)]3+ is eight
coordinate and bound to three N-donors from the triazacyclono-
none framework [Y(1)–N 2.436(9)–2.655(7) Å], two azome-
thine nitrogen atoms [Y(1)–N(13) 2.418(8) and Y(1)–N(24)
2.472(8) Å], two phenolate oxygens [Y(1)–O(21) 2.391(6) and
Y(1)–O(21i) 2.322(6) Å] and a hydroxy O-donor [Y(1)–O(1)
2.277(7) Å]. This coordination mode is similar to that observed
for the binuclear LuIII and DyIII complexes with the iminophe-
nolate cryptate obtained by the template Schiff-base condensa-
tion of tris(2-aminoethyl)amine and 4-methyl-2,6-diformylphe-
nol, where three phenolate oxygens bridge a pair of adjacent
lanthanide ions [Lu…Lu 3.447(1) Å, Dy…Dy 3.4840(4) Å].13
In the case of the binuclear PrIII, GdIII and LaIII complexes of
phenol-based compartmental macrocycles with 1,8-diamino-
3,6-dioxaoctane11 and 2,2A-bipyridine9 as lateral chains, the two
metal centres are bridged only by the two phenolate oxygen
atoms, with nitrate and acetate anions completing the coordina-
tion sphere. The Pr…Pr, Gd…Gd and La…La distances are
4.05, 3.97 and 4.135(12) Å, respectively, whereas in
[Y2(L)(OH)]3+ the Y…Y distance is significantly shorter at
We thank the EPSRC and University of Nottingham for
support.
Notes and references
suppdata/cc/b1/b108549m/ for crystallographic data in cif or other
electronic format.
1 P. Zanello, S. Tamburini, P. A. Vigato and G. A. Mazzocchin, Coord.
Chem. Rev., 1987, 77, 165; A. J. Atkins, D. Black, A. J. Blake, A.
Martin-Becerra, S. Parsons, L. Ruiz-Ramirez and M. Schröder, Chem.
Commun., 1996, 457; H. Okawa, H. Furutachi and D. E. Fenton, Coord.
Chem. Rev., 1998, 174, 51.
2 O. Kahn, Struct. Bonding (Berlin), 1987, 68, 89.
3 D. E. Fenton and H. Okawa, Perspect. Bioinorg. Chem., 1993, 2, 81.
4 L. F. Johnson and H. J. Guggeinheim, Appl. Phys. Lett., 1971, 19, 44; S.
A. Pollack and D. B. Chang, J. Appl. Phys., 1988, 64, 2885.
5 H. S. Kiliaan, F. P. Vanherwijnen and G. Blasse, J. Solid State Chem.,
1988, 74, 39.
6 J. P. Desvergne, F. Fages, H. Bouaslaurent and P. Marsau, Pure Appl.
Chem., 1992, 64, 1231.
7 K. D. Matthews, R. A. Fairman, A. Johnson, K. V. N. Spence, I. A.
Kahwa, G. L. McPherson and H. Robotham, J. Chem. Soc., Dalton
Trans., 1993, 1719.
8 H. Adams, D. E. Fenton, S. R. Haque, S. L. Heath, M. Ohba, H. Okawa
and S. E. Spey, J. Chem. Soc., Dalton Trans., 2000, 1849; U. Casellato,
S. Tamburini, P. Tomasin, P. A. Vigato, S. Aime, A. Barge and M.
Botta, Chem. Commun., 2000, 145; M. Yonemura, H. Okawa, M. Ohba,
D. E. Fenton and L. K. Thompson, Chem. Commun., 2000, 817; H.
Furutachi, S. Fujinami, M. Suzuki and H. Okawa, J. Chem. Soc., Dalton
Trans., 1999, 2197; S. Kita, H. Furutachi and H. Okawa, Inorg. Chem.,
1999, 38, 4038.
9 Z. Wang, J. Reibenspies and A. E. Martell, Inorg. Chem., 1997, 36,
629.
10 I. A. Kahwa, J. Selbin, T. C. Y. Hsieh and R. A. Laine, Inorg. Chim.
Acta, 1986, 118, 179; I. A. Kahwa, F. R. Fronczek and J. Selbin, Inorg.
Chim. Acta, 1987, 126, 227.
11 I. A. Kahwa, S. Folkes, D. J. Williams, S. V. Ley, C. A. Omahoney and
G. L. McPherson, J. Chem. Soc., Chem. Commun., 1989, 1531; P.
Guerriero, P. A. Vigato, J. C. G. Bunzli and E. Moret, J. Chem. Soc.,
Dalton Trans., 1990, 647; K. D. Matthews, I. A. Kahwa and D. J.
Williams, Inorg. Chem., 1994, 33, 1382.
12 L. R. Gahan, G. A. Lawrence and A. M. Sargeson, Aust. J. Chem., 1982,
35, 1119.
13 C. Platas, F. Avecilla, A. de Blas, and T. Rodriguez-Blas, C. F. G. C.
Geraldes, E. Toth, A. E. Merbach and J.-C. Bunzli, J. Chem. Soc.,
Dalton Trans., 2000, 611 and references therein.
Fig. 2 Structure of [Y2(L)(OH)]3+ with numbering scheme adopted.
Hydrogen atoms have been omitted for clarity. Symmetry operation: i = 2x
+ 1, y, 2z + 3/2.
Chem. Commun., 2001, 2582–2583
2583