4828 J. Phys. Chem. A, Vol. 108, No. 22, 2004
Torieda et al.
6. Competing Process with Electron Transfer. Provided
that the excitation energy transfer (EnT) of 3MLCT(Ru) occurs
in competition with EET, the yield of EET product is reduced.
Yields Smaller than 0.5 were given for the formation of
[(dmb)2RuIII(L-(CH2)n-L)OsII(bpy)2]5+ (dmb, 4,7-dimethyl-2,2′-
bipyridine; L, 2-(2-pyridyl)-1-benzimidazolyl; n ) 3, 4, 5) in
the intramolecular phosphorescence quenching of [(dmb)2RuII-
through-ligand electronic coupling of dπ(Ru)-dπ(Co), which
was estimated from the strong intensity of inter-valence transi-
tion of [(tpy)RuIII(L-L)RuII(tpy)]5+ 38
, allows the hole-transfer
between [RuIII(tpy)2] and [CoII(tpy)2]. The possibility that the
lower lying d-d excited-states are produced in competition with
the ET of [(tpy)RuIII(tpy-ph-tpy)CoII(tpy)]5+ is also pursued. In
the case of [(bpy)2RuIII(tpphz)-CoII(bpy)2]5+, both RET and HT
are retarded very much by a small superexchange electronic
interaction between dπ(RuIII) and dπ(CoII).
(L-(CH2)n-L)OsIII(bpy)2]5+ 13b
where the energy accepting level
,
of [OsIII(bpy)2] moiety was the triplet ligand-to-metal charge
3
transfer state. Excitation energy transfer of MLCT(Ru) to the
References and Notes
cobalt(III) moiety is able to be in competition with EET, since
the triplet d-d excited-states of the [CoIII(tpy)2] moiety of [(tpy)-
RuII(tpy-ph-tpy)CoIII(tpy)]5+ and [(tpy)RuII(tpy-tpy)CoIII(tpy)]5+
are low enough (-1.04 and -0.94 eV, respectively). Since the
optical transitions to the triplet excited-states of [CoIII(tpy)2]
moiety are spin-forbidden, only exchange interaction is able to
cause the EnT. The interactions not only between π*(L-) and
dσ*(CoIII)but also between dπ(RuIII) and dπ(CoII) are required
for the EnT, of which the former and the latter are necessary
(1) Hoselton, M. A.; Lin, C.-T.; Schwartz, H. A.; Sutin, N. J. Am.
Chem. Soc. 1978, 100, 2883.
(2) (a) Ohno, T.; Lichtin, N. N. J. Am. Chem. Soc. 1980, 102, 4636.
(b) Ohno, T.; Lichtin, N. N. J. Phys. Chem. 1982, 86, 354.
(3) (a) Ohno, T.; Yoshimura, A.; Mataga, N. J. Phys. Chem. 1986, 90,
3295. Ohno, T.; Yoshimura, A.; Shioyama, H.; Mataga, N. J. Phys. Chem.
1987, 91, 4365. (b) Gould, I. R.; Ege, D.; Mattes, S. L.; Farid, S. J. Am.
Chem. Soc. 1987, 109, 3794.
(4) Yoshimura, A.; Uddin, Md. J.; Amasaki, N.; Ohno, T. J. Phys.
Chem. A 2001, 105, 10846.
(5) (a) Asahi, T.; Mataga, N. J. Phys. Chem. 1991, 95, 1956. (b) Asahi,
T.; Ohkohchi, M.; Mataga, N. J. Phys. Chem. 1993, 97, 13132.
(6) Gould, I. R.; Noukakis, D.; Gromez-Jahn, Goodman, J. L.; Farid,
S, J. Am. Chem. Soc. 1993, 115, 4405.
(7) (a) Mataga, N.; Taniguchi, S.; Chosrowjan, H.; Osuka, A.; Yoshida,
N. Photochem. Photobiol. Sci. 2003, 2, 493. (b) Mataga, N.; Taniguchi, S.;
Chosrowjan, H.; Osuka, A.; Yoshida, N. Chem. Phys. 2003, 295, 215.
(8) Zhu, C.; Nakamura, H. J. Chem. Phys. 1994, 101, 10630.
(9) Zhu, C.; Nakamura, H. J. Chem. Phys. 1994, 102, 7448.
(10) (a) Elsaesser, T.; Kaiser, W. Annu. ReV. Phys. Chem. 1991, 42,
83. (b) Mataga, N.; Chosrowjan, H.; Taniguchi, S.; Shibata, Y.; Yoshida,
N.; Osuka, A.; Kikuzawa, T.; Okada, T. J. Phys. Chem. A 2002, 106, 12191.
(11) Okamoto, H.; Nakabayashi, T.; Tasumi, M. J. Phys. Chem. B 1997,
101, 3488.
(12) Mizutani, Y.; Uesugi, Y.; Kitagawa, T. J. Chem. Phys. 1999, 111,
8950.
(13) (a) Bergkamp, M. A.: Chang, C.-K.; Netzel, T. L. J. Phys. Chem.
1983, 87, 4441. (b) Gholamkhass, B.; Nozaki, K.; Ohno, T. J. Phys. Chem.
B 1997, 101, 9010.
(14) Damrauer, N. H.; Cerullo, G.; Yeh, A.; Boussie, T. R.; Shank, C.
V.; MaCusker, J. K. Science, 1997, 275, 54.
(15) Bhasikuttan, A. C.; Suzuki, M.; Nakashima, S.; Okada, T. J. Am.
Chem. Soc. 2002, 124, 8398.
(16) Torieda, H. Yoshimura, A.; Nozaki, K.; Sakai, S.; Ohno, T. J. Phys.
Chem. A 2002, 106, 11034.
(17) Torieda, H.; Yoshimura, A.; Nozaki, K.; Ohno, T. J. Phys. Chem.
A 2004, 108, 2148.
(18) Amouyal, E.; Homsi, A.; Chambron, J.-C.; Sauvage, J.-P. J. Chem.
Soc., Dalton Trans. 1990, 1841.
(19) Bolger, J.; Gourdon, A.; Ishow, E.; Launay, J.-P. Inorg. Chem. 1996,
35, 2937.
(20) Vlcek, A. A. Inorg. Chem. 1967, 6, 1425.
(21) Ohno, T.; Yoshimura, A.; Prasad, D. R.; Hoffman, M. Z. J. Phys.
Chem. 1991, 95, 4723.
(22) Yoshimura, A.; Nozaki, K.; Ikeda, N.; Ohno, T. J. Am. Chem. Soc.
1993, 115, 4597; J. Phys. Chem. 1996, 100, 1630.
(23) Tsushima, M,; Motojima, Y.; Ikeda, N.; Yonehara, H.; Etori, H.;
Pac, C.; Ohno, T. J. Phys. Chem. A 2002, 106, 2256.
(24) Gholamkhass, B. Thesis, Osaka University, 1998.
(25) (a) Chiorboli, C.; Bignozzi, C. A.; Scandola, F.; Ishow, E.; Gourdon,
A.; Launay, J.-P. Inorg. Chem. 1999, 38, 2402. (b) Chiorboli, C.; Rodgers,
M.-A. J.; Scandola, F. J. Am. Chem. Soc. 2003, 125, 483.
(26) Song, X.; Lei, Y.; Wallendal, S. V.; Perkovic, M. W.; Jackman,
D. C.; Endicott, J. F.; Rillema, D. P. J. Phys. Chem. 1993, 97, 3225.
(27) Reference deleted in proof.
(28) Marcus, R. A. J. Chem. Phys. 1965, 43, 2654.
(29) ∆rDA is assumed to be 1.0 nm in the EET.
(30) Figgis, B. N.; Kucharski, E. S.; White, A. H. Aust. J. Chem. 1983,
36, 1563.
(31) Crayton, P. H. Inorg. Synth. 1963, 7, 207.
(32) Yanagi, K.; Ohashi, Y.; Sasada, Y.; Kaizu, Y.; Kobayashi, H. Bull.
Chem. Soc. Jpn. 1981, 54, 118.
3
for the EET of MLCT(Ru) to [CoIII(tpy)2] moiety and for the
HT of RuIII to [CoII(tpy)2] moiety, respectively. Consequently,
the interaction between π*(L-) and dσ*(CoIII) necessary for the
3
EET of MLCT(Ru) is more favorably satisfied than both the
interactions of π*(L-)-dσ*(CoIII) and dπ(RuIII)-dπ(CoII) for
3
the EnT of MLCT(Ru).
The rate of the EnT can be comparable with that of the EET,
only when the Franck-Condon factor of the EET process is
less favorable than that of the EnT. Following energy-gap law
of nonradiative transitions, Franck-Condon factors of EET and
EnT decrease as the vertical free-energy gaps of EET
(- ∆G° - λEET,i - λEET,s) and EnT (- ∆G° - λEnT,i
-
EET
EnT
λ
EnT,s), respectively. As the magnitudes of ∆G° , λEnT,i, and
EnT
λ
EnT,s are -1.15, +0.45,42 and 0 eV, respectively, and those of
EET
∆G° , λEET,i and λEET,s are -0.93, 0.38,42 and 0.85 eV,17
respectively, for [(tpy)RuII(tpy-ph-tpy)CoIII(tpy)]5+, the EnT with
a vertical free-energy gap of 0.7 eV is more preferable than
EET with the negative energy gap (-0.30 eV). It is probable
that the second lowest triplet state of [CoIII(tpy)2] moiety as an
energy acceptor improves the Franck-Condon factor of EnT
more. The small solvent reorganization (0.72 eV) of EET for
[(tpy)Ru(tpy-tpy)Co(tpy)]5+ due to a small Ru-Co distance is
expected to shift the vertical free-energy gap of EET to the less
negative (-0.22 eV). This might lead the more contribution of
3
EET to the decay of MLCT resulting in the larger EET yield
of [(tpy)RuII(tpy-tpy)CoIII(tpy)]5+ than that of [(tpy)RuII(tpy-
ph-tpy)CoIII(tpy)]5+
.
Conclusion
EET reaction products of [RuII(L-L)CoIII]5+ (L-L: tpy-ph-
tpy, tpy-tpy, and tpphz) were formed in the intramolecular
electron-transfer quenching of 3MLCT(Ru) in a time shorter than
10 ps for subpicosecond laser excitation. A transient actinometry
using [Ru(bpy)3]2+ was applied to evaluate the quantum yield
of EET product. The yields of the EET reaction products in
BN, ΦEET, were 0.41 and 0.53 for L-L ) tpy-ph-tpy and for
L-L ) tpy-tpy of [2RuIII(tpy)(L-L)2CoII(tpy)]5+, respectively.
The ET yield of [(bpy)2 RuIII(tpphz)4CoII(bpy)2]5+ was 0.77-
2
0.84. The smaller yields of EET product in PC with a slow
relaxation time and at lower temperatures suggest that the triplet
d-d excited state of [CoIII(tpy)2] moiety is formed during the
solvent relaxation. A tunneling transition of the nonrelaxed EET
products to the lowest d-d excited-states of [CoIII(tpy)2] moiety
takes place as a hole-transfer from [RuIII(tpy)2] to [CoII(tpy)2]
generating an electronic configuration of dπ6dσ*. A strong
(33) Szalda, S.; Creutz, C.; Mahajan, D.; Sutin, N. Inorg. Chem. 1983,
22, 2372.
(34) Shimura, Y. Bull. Chem. Soc. Jpn. 1963, 36, 1281.
(35) Islam, A.; Ikeda, N.; Yoshimura, A.; Ohno, T. Inorg. Chem. 1998,
37, 3093.
(36) Islam, A.; Ikeda, N.; Nozaki, K.; Ohno, T. Chem. Phys. Lett. 1996,
263, 209.