C O M M U N I C A T I O N S
Table 2. Pd-Catalyzed Allylation of Indoles 1 with Allyl Alcohola
In conclusion, this communication demonstrates that under
3
palladium catalysis, Et B nicely promotes the C3-selective allylation
of indoles and tryptophans using a wide structural variety of allyl
alcohols as allylation agents. The yields of allylation are excellent
and in most cases exceed 80%. Mechanistic details that account
for the contrasting regioselectivity (providing either straight-chain
isomer 2c or branched-chain isomer R-2e) and diastereoselectivity
(providing an endo-isomer of 2m) are a subject to be addressed,
and the results together with synthetic applications will be reported
soon.
Acknowledgment. Financial support by the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japanese Govern-
ment, is gratefully acknowledged. We thank Mr. Takashi Utoh, Mrs.
Ayako Kiyonaga for their technical help and Mr. Ohhama, NMR
Facility, for his splendid technical assistance.
Supporting Information Available: Experimental procedure,
characterization data of 2a-m, and complete ref 5. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell
Science: Oxford, 2000. (b) Sundberg, R. J. Indoles; Academic Press:
London, 1996.
(2) C3-Allylation: (a) Zhou, J.; Tang, Y. J. Chem. Soc., Chem. Commun.
2004, 432. (b) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H.
W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (c) Zhou, J.; Tang, Y.
J. Am. Chem. Soc. 2002, 124, 9030. (d) Hamel, P. J. Org. Chem. 2002,
67, 2854. (e) Yadav, J. S.; Reddy, B. V. S.; Abraham, S.; Sabitha, G.
Synlett 2002, 1550. (f) Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.;
Martin, S. F. J. Am. Chem. Soc. 2001, 123, 5918. (g) Ottoni, O.; Neder,
A. de V. F.; Dias, A. K. B.; Cruz, R. P. A.; Aquino, L. B. Org. Lett.
a
Reaction conditions: 1 (1.0 mmol), Pd(PPh3)4 (5 mol %), allyl alcohol
b
(
(
1.0 mmol), and Et3B (0.3 mmol) at 50 °C under N2. Allyl alcohol
3 mmol) and Et3B (2.4 mmol). At room temperature. 63% conversion.
c
d
2001, 3, 1005. N-allylation: (h) Antilla, J. C.; Klapars, A.; Buchwald, S.
Scheme 1. Stereoselective Synthesis of Pyrroloindole
Frameworks (Figures Refer to the NOE Increments)
L. J. Am. Chem. Soc. 2002, 124, 11684. (i) Bodwell, G. J.; Li, J. Org.
Lett. 2002, 4, 127.
3) (a) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J.
Am. Chem. Soc. 2002, 124, 11846. (b) Zhu, X.; Ganesan, A. J. Org. Chem.
(
2
002, 67, 2705. (c) Henry, K. J., Jr.; Grieco, P. A. J. Chem. Soc., Chem.
Commun. 1993, 510. (d) Fishwick, C. W. G.; Jones, A. D.; Mitchell, M.
B. Heterocycles 1991, 32, 685.
(
(
(
(
(
4) Brown, J. B.; Henbest, H. B.; Jones, E. R. J. Chem. Soc. 1952, 3172.
5) Wang, T., et al. J. Med. Chem. 2003, 46, 4236.
6) Billups, W. E.; Erkes, R. S.; Reed, L. E. Synth. Commun. 1980, 147.
7) Trost, B. M.; Molander, G. A. J. Am. Chem. Soc. 1981, 103, 5969.
8) Wenkert, E.; Angell, E. C.; Ferreira, V. F.; Michelotti, E. L.; Piettre, S.
R.; Sheu, J.-H.; Swindell, C. S. J. Org. Chem. 1986, 51, 2343.
9) Kimura, M.; Futamata, M.; Shibata, K.; Tamaru, Y. J. Chem. Soc., Chem.
Commun. 2003, 234.
(
(
10) (a) Mukai, R.; Horino, Y.; Tanaka, S.; Tamaru, Y.; Kimura, M. J. Am.
Chem. Soc. 2004, 126, 11138. (b) Kimura, M.; Mukai, R.; Tanigawa, N.;
Tanaka, S.; Tamaru, Y. Tetrahedron 2003, 59, 7767. (c) Horino, Y.; Naito,
M.; Kimura, M.; Tanaka, S.; Tamaru, Y. Tetrahedron Lett. 2001, 42, 3113.
(
d) Tamaru, Y.; Horino, H.; Araki, M.; Tanaka, S.; Kimura, M.
Tetrahedron Lett. 2000, 41, 5705.
11) Both Pd(PPh and Et B are indispensable for the allylation. In the absence
of either of them, no reactions take place. The simple Friedel-Crafts
allylation promoted by Et B as a Lewis acid catalyst is improbable.
(
(
)
3 4
3
3
12) Use of allyl chloride, in place of allyl alcohol, under the conditions resulted
in no reaction.
indoles and the otherwise reactive indolic N-H and phenolic OH
groups (run 5).
Encouraged by a facile reaction of 1d, we examined allylation
of L-tryptophan methyl ester (1i). Selective alkylative amination
upon the indole C2-C3 bond took place and provided 2m as a
(13) The structure of 2m was deduced on the basis of NOE experiments. Some
typical data are given in Scheme 1.
(
14) Phosphoric acid promoted hydroamination across the C2-C3 bond
provides exo- and endo-pyrroloindole in a 9:1 ratio: Bruncko, M.; Crich,
D.; Samy, R. J. Org. Chem. 1994, 59, 5543.
(
15) Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski, A.; Bornmann,
W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953.
single diastereomer in ∼73-76% isolated yield without protecting
(16) (a) Hernandez, F.; Avendano, C.; S o¨ llhuber, M. Tetrahedron Lett. 2003,
44, 3367. (b) Tan, G. H.; Zhu, X.; Ganesan, A. Org. Lett. 2003, 5, 1801.
two kinds of amino groups (Scheme 1).1
3,14
The mode of stereo-
(c) Morales-Rios, M. S.; Suarez-Castillo, O. R.; Trujillo-Serrato, J. J.;
selectivity is opposite to that reported for the sulfenylation-
amination of the Boc derivative of 1i, which selectively pro-
vides an exo-pyrroloindole product.15 The present stereoselective
alkylative amination may be utilized for the synthesis of, for
example, ardeemine and flustramine family alkaloids.1
Joseph-Nathan, P. J. Org. Chem. 2001, 66, 1186. (d) Sanchez, J. D.;
Ramos, M. T.; Avendano, C. Tetrahedron Lett. 2000, 41, 2745. (e)
Kawasaki, T.; Terashima, R.; Sakaguchi, K.; Sekiguchi, H.; Sakamoto,
M. Tetrahedron Lett. 1996, 37, 7525. (f) Crich, D.; Pavlovic, A. B.; Samy,
R. Tetrahedron Lett. 1995, 51, 6379.
4-16
JA0501161
J. AM. CHEM. SOC.
9
VOL. 127, NO. 13, 2005 4593