10.1002/anie.201913544
Angewandte Chemie International Edition
COMMUNICATION
A. Khan, A. M. Asiri, S. A. Kosa, H. Garcia, A. Grirrane, J. Catal. 2015,
329, 401–412; d) K. Nagao, H. Ohmiya, M. Sawamura, Org. Lett. 2015,
17, 1304–1307; e) A. Yoshimura, Y. Takamachi, L. B. Han, A. Ogawa,
Chem. Eur. J. 2015, 21, 13930–13933; f) Y. Nagashima, K. Hirano, R.
Takita, M. Uchiyama, J. Am. Chem. Soc. 2014, 136, 8532–8535.
[14] The utility of PhR2SiBPin reagents (R = alkyl, aryl) as functional handles
is somewhat hampered due to site-selectivity issues arising from the
presence of multiple sp2 C–Si bonds.
[15] See Supporting information for details.
[16] The mass balance accounts for recovered starting material
[17] A. A. Toutov, K. N. Betz, D. P. Schuman, W.-B. Liu, A. Fedorov, B. M.
Stoltz, R. H. Grubbs J. Am. Chem. Soc. 2017, 139, 1668–1674.
[18] CCDC 1960717 (3m) contain the supplementary crystallographic data
for this paper and can be obtained free of charge from The Cambridge
[19] S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299–309.
[20] Unfortunately, the method could not be extended to aliphatic alkynes.
See Supporting information for details.
[5]
[6]
[7]
For 1,2-silaboration of alkynes: a) M. Zhao, C. -C. Shan, Z. -L. Wang, C.
Yang, Y. Fu, Y. -H. Xu, Org. Lett. 2019, 21, 6016–6020; b) Y. Morimasa,
K. Kabasawa, T. Ohmura, M. Suginome, Asian J. Org. Chem., 2019, 8,
1092–1096; c) Y. Nagashima, D. Yukimori, C. Wang, M. Uchiyama,
Angew. Chem. Int. Ed. 2018, 57, 8053–8507; Angew. Chem. 2018, 130,
8185–8189; d) T. Ohmura, K. Oshima, M. Suginome, Angew. Chem. Int.
Ed. 2011, 50, 12501–12504; e) T. Ohmura, K. Oshima, H. Taniguchi, M.
Suginome, J. Am. Chem. Soc. 2010, 132, 12194–12196; f) T. Ohmura,
K. Oshima, M. Suginome, Chem. Comm. 2008, 1416–1418.
[21] a) V. C. Jordan, Eur. J. Cancer 2008, 44, 30–38; b) A. Schultz, S. Laschat,
S. Diele, M. Nimtz, Eur. J. Org. Chem. 2003, 2829–2844; c) A. Schutz,
A.; S. Diele, S. Laschat, M. Nimtz, Adv. Funct. Mater. 2001, 11, 441–446.
[22] A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4692–4698.
[23] a) E. La Cascia, A. B. Cuenca, E. Fernández, Chem. Eur. J., 2016, 22,
18737–18741; b) M. Shimizu, T. Hiyama, Proc. Jpn. Acad., Ser. B, Phys.
Biol. Sci. 2008, 84, 75–85; c) M. Shimizu, K. Shimono, M. Schelper, T.
Hiyama, Synlett 2007, 1969–1971; d) M. Shimizu, C. Nakamaki, K.
Shimono, M. Schelper, T. Kurahashi, T. Hiyama, J. Am. Chem. Soc.
2005, 127, 12506–12507.
a) Y. Lv, W. Pu, L. Shi, Org. Lett. 2019, 21, 6034–6039; b) L. Liu, K. Sun,
L. Su, J. Dong, L. Cheng, X. Zhu, C. -T. Au, Y. Zhou, S. -F. Yin, Org. Lett.
2018, 20, 4023–4027; c) Q. Sun, L. Li, L. Liu, Q. Guan, Y. Yang, Z. Zha,
Z. Wang, Org. Lett. 2018, 20, 5592–5596; d) S. Krautwald, M. J. Bezdek,
P. J. Chirik, J. Am. Chem. Soc. 2017, 139, 3868–3875; e) M. Murai, E.
Uemura, S. Hori, K. Takai, Angew. Chem., Int. Ed. 2017, 56, 5862−5866;
Angew. Chem. 2017, 129, 5956–5960; f) S. Tong, C. Piemontesi, Q.
Wang, M. -X. Wang, J. Zhu, Angew. Chem., Int. Ed. 2017, 56, 7958–
7962; Angew. Chem. 2017, 129, 8066−8070.
a) T. Kurahashi, T. Hata, H. Masai, H. Kitagawa, M. Shimizu, T. Hiyama,
Tetrahedron 2002, 58, 6381–6395; b) T. Hata, H. Kitagawa, H. Masai, T.
Kurahashi, M. Shimizu, T. Hiyama, Angew. Chem., Int. Ed. 2001, 40,
790–792; Angew. Chem. 2001, 113, 812–814; c) D. S. Matteson,
Synthesis 1975, 147–158.
[24] R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461–1473.
[25] M. Sakai, H. Hayashi, N. Miyaura Organometallic 1997, 16, 4229–4231.
[26] K. Funaki, T. Sato, S. Oi. Org. Lett. 2012, 14, 6186. The formation of 9
can tentatively be interpreted on the basis of a subsequent metal hydride
insertion into the p-system followed by protonolysis.
[8]
[9]
A. Morinaga, K. Nagao, H. Ohmiya, M. Sawamura, Angew. Chem. Int.
Ed. 2015, 54, 15859–15862; Angew. Chem. 2015, 127, 16085–16088.
For selected references: a) R. Ramesh, D. S. Reddy, J. Med. Chem.
2018, 61, 3779–3798; b) H. Hazrati, M. Oestreich, Org. Lett. 2018, 20,
5367−5369; c) L. Li, T. Gong, X. Lu, B. Xiao, Y. Fu, Nat. Commun. 2017,
8, 345–349; d) M. Parasram, V. Gevorgyan, Acc. Chem. Res. 2017, 50,
2038–2053; e) L, Xu, S. Zhang, P. Li, Chem. Soc. Rev. 2015, 44, 8848–
8858; f) Synthesis and Applications of Organoboron Compounds Topics
in Organometallic Chemistry, Vol. 49 (Eds.: E. Fernández, A. Whiting),
Springer, Berlin, 2015; g) M. Burns, S. Essafi, J. R. Bame, S. P. Bull, M.
P. Webster, S. Balieu, J. W. Dale, C. P. Butts, J. N. Harvey, V. K.
Aggarwal, Nature, 2014, 513, 183–188.
[27] a) M. Kondo, J. Kanazawa, T. Ichikawa, T. Shimokawa, Y. Nagashima,
K. Miyamoto, M. Uchiyama, Angew. Chem. Int. Ed. 2019, DOI,
10.1002/anie.201909655. For an example of silylboronic amides
engaging in metal-free radical transformations, see: b) A, Matsumoto, Y,
Ito, J. Org. Chem. 2000, 65, 5707–5711.
[28] Selected examples for 1,2-shift from boron to sp carbon: a) N. Ishida, W.
Ikemoto, M. Narumi, M. Murakami, Org. Lett. 2011, 13, 3008–3010; b) N.
Ishida, Y. Shimamoto, M. Murakami, Org. Lett. 2009, 11, 5434–5437; c)
Ishida, N. Miura, T. Murakami, M. Chem. Commun. 2007, 4381–4383; d)
Shimizu, M. Kurahashi, T. Kitagawa, H. Hiyama, T. Org Lett. 2003, 5,
225–227; e) J. D. Buynak and B. L. Geng, Organometallics, 1995, 14,
3112–3115.
[10] a) J. M. Fordham, M. N. Grayson, V. K. Aggarwal, Angew. Chem. Int. Ed.
2019, 58, 15268–15272; Angew. Chem. DOI: 10.1002/ange.201907617;
b) C. Shu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2019, 58,
3870–3874; Angew. Chem. 2019, 131, 3910–3914; c) M. D. Aparece, C.
Gao, G. J. Lovinger, J. P. Morken, Angew. Chem. Int. Ed. 2019, 58, 592–
595; Angew. Chem. 2019, 131, 602–605; d) D. Wang, C. Mück-
Lichtenfeld, A. Studer, J. Am. Chem. Soc. 2019, 141, 14126–14130; e)
B. Zhao, Z. Li, Y. Wu, Y. Wang, J. Qian, Y. Yuan, Z. Shi, Angew. Chem.
Int. Ed. 2019, 58, 9448–9452; Angew. Chem. 2019, 131, 9548–9552; f)
C. Gerleve, M. Kischkewitz, A. Studer, Angew, Chem. Int. Ed. 2018, 57,
2441–2444; Angew. Chem. 2018, 130, 2466–2469; g) L. Zhang, G. J.
Lovinger, E. K. Edelstein, A. A. Szymaniak, M. P. Chierchia, J. P. Morken,
Science 2016, 351, 70–74.
[29] See Supporting Information for a proposed mechanism.
[30] The signal of plausible boron adduct (δ = -3.4 ppm) is observed in the
reaction mixture by 11B NMR. (see SI for detail)
[31] a) H. C. Brown, A. B. Levy, M. M. Midland, J. Am. Chem. Soc. 1975, 97,
5017–5018; b) G. Zweifel, H. Arzoumanian, C. C. Whitney, J. Am. Chem.
Soc. 1967, 89, 3652–3653.
[32] a) R. F. Algera, Y. Ma, D. B. Collum, J. Am. Chem. Soc. 2017, 139, 7921–
7930; b) O. Tai, R. Hopson, P. G. Williard, J. Org. Chem. 2017, 82, 6223–
6231; c) B. L. Lucht, D. B. Collum, J. Am. Chem. Soc. 1996, 118, 2217–
2225.
[33] V. Ganesh, M. Odachowski, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017,
56, 9752–9756; Angew. Chem. 2017, 129, 9884–9888.
[11] a) Y. Gu, Y. Shen, C. Zarate, R. Martin, J. Am. Chem. Soc. 2019, 141,
127–132; b) X.-W. Liu, C. Zarate, R. Martin, Angew. Chem. Int. Ed. 2019,
58, 2064–2068; Angew. Chem. 2019, 131, 2086–2090; c) R. Somerville,
L. Hale, E. Gomez-Bengoa, J. Bureś, R. Martin, J. Am. Chem. Soc. 2018,
140, 8771–8780; d) C. Zarate, M. Nakajima, R. Martin, J. Am. Chem. Soc.
2017, 139, 1191–1197; e) C. Zarate, R. Manzano, R. Martin, J. Am.
Chem. Soc. 2015, 137, 6754–6757; f) C. Zarate, R. Martin, J. Am. Chem.
Soc. 2014, 136, 2236–2239.
[12] For a remarkable exception, see ref. 8.
[13] Et3SiBPin is available in bulk quantities in one-step from cheap Et3SiH
(Gelest; 25 g, 39 $) and B2pin2 (Bepharm, 100 g, 60 $): A. B. Boebel, J.
F. Hartwig, Organometallics 2008, 27, 6013–6019. Unlike related R3SiLi
nucleophilic reagents, the inherent stability of Et3SiBPin offers the
advantage of avoiding cryogenic conditions.
This article is protected by copyright. All rights reserved.