G Model
CCLET-6206; No. of Pages 5
S. Zhou, B. Cai, C. Hu et al.
Chinese Chemical Letters xxx (xxxx) xxx–xxx
Appendix A. Supplementary data
Supplementarymaterialrelatedtothisarticlecanbefound, inthe
References
[1] (a) R.S. Ward, Chem. Soc. Rev. 11 (1982) 75–125:
(b) D.C. Chauret, C.B. Bernard, J.T. Arnason, et al., J. Nat. Prod. 59 (1996)
152–155:
(c) R.S. Ward, Nat. Prod. Rep. 16 (1999) 75–96:
(d) N. Beldjoudi, L. Mambu, M. Labaïed, et al., J. Nat. Prod. 66 (2003) 1447–
1450:
(e) T. She, X.N. Wang, H.X. Lou, Nat. Prod. Rep. 26 (2009) 916–935:
(f) A. Radadiya, A. Shah, Eur. J. Med. Chem. 97 (2015) 356–376:
(g) R.J. Nevagi, S.N. Dighe, S.N. Dighe, Eur. J. Med. Chem. 97 (2015) 561–581.
[2] (a) A. Goel, A. Kumar, A. Raghuvanshi, Chem. Rev. 113 (2013) 1614–1640:
(b) H.Q. Yin, B.W. Lee, Y.C. Kim, D.H. Sohn, B.H. Lee, Arch. Pharm. Res. 27 (2004)
919–922.
[3] (a) T.D. Sheppard, J. Chem. Res. 35 (2011) 377–385:
(b) C. Zhu, Y. Ding, L.W. Ye, Org. Biomol. Chem. 13 (2015) 2530–2536:
(c) J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Rev. 115 (2015) 5301–5365:
(d) B.M. Trost, O.R. Thiel, H.C. Tsui, J. Am. Chem. Soc. 125 (2013) 13155–13164:
(e) E.D. Coy B, L. Jovanovic, M. Sefkow, Org. Lett. 12 (2010) 1976–1979:
(f) J. Meng, T. Jiang, H.A. Bhatti, et al., Org. Biomol. Chem. 8 (2010) 107–113:
(g) D.H. Wang, J.Q. Yu, J. Am. Chem. Soc. 133 (2011) 5767–5769:
(h) X.X. Sun, H.H. Zhang, G.H. Li, L. Meng, F. Shi, Chem. Commun. 52 (2016)
2968–2971:
(i) Y. Cheng, Z. Gang, W. Li, P. Li, Org. Chem. Front. 5 (2018) 2728–2733:
(j) T. Zhou, T. Xia, Z. Liu, L. Liu, J. Zhang, Adv. Synth. Catal. 360 (2018) 4475–
4479.
[4] (a) J.Y. Wang, W.J. Hao, S.J. Tu, B. Jiang, Org. Chem. Front. 7 (2020) 1743–1778:
(b) C.G.S. Lima, F.P. Pauli, D.C.S. Costa, et al., Eur. J. Org. Chem. 2020 (2020)
2650–2692:
(c) L. Caruana, M. Fochi, L. Bernardi, Molecules 20 (2015) 11733–11764:
(d) K.Zhao Y. Zhi, T. Shu, et al., Angew. Chem. Int. Ed. 55 (2016) 12104–12108:
(e) A. Parra, M. Tortosa, ChemCatChem 7 (2015) 1524–1526:
(f) P. Chauhan, U. Kaya, D. Enders, Adv. Synth. Catal. 359 (2017) 888–912:
(g) W. Li, X. Xu, P. Zhang, P. Li, Chem. Asian J. 13 (2018) 2350–2359:
(h) Y.J. Xiong, S.Q. Shi, W.J. Hao, S.J. Tu, B. Jiang, Org. Chem. Front. 5 (2018)
3483–3487:
(i) S. Liu, X.C. Lan, K. Chen, et al., Org. Lett. 19 (2017) 3831–3834:
(j) W. Li, H. Yuan, Z. Liu, et al., Adv. Synth. Catal. 360 (2018) 2460–2464:
(k) Q. Liu, S. Li, X.Y. Chen, K. Rissanen, D. Enders, Org. Lett. 20 (2018) 3622–
3626:
(l) F. Jiang, F.R. Yuan, L.W. Jin, G.J. Mei, F. Shi, ACS Catal. 8 (2018) 10234–10240:
(m) X.L. Jiang, S.F. Wu, J.R. Wang, G.J. Mei, F. Shi, Adv. Synth. Catal. 360 (2018)
4225–4235:
(n) J.R. Wang, X.L. Jiang, Q.Q. Hang, et al., J. Org. Chem. 84 (2019) 7829–7839:
(o) Y.C. Cheng, C.S. Wang, T.Z. Li, et al., Org. Biomol. Chem. 17 (2019) 6662–
6679:
Scheme 5. Mechanism studies.
To betterunderstandingofthereactionmechanism,somecontrol
experiments were subsequently conducted. As shown in Scheme 5,
treatment of 1a and 2a under standard reaction conditions for 12 h
gavetheone-stepO-Hinsertionproduct8in81%isolatedyield.Note
that, visible light irradiation was crucial for the formation of 8
(Scheme 5a). 8 could transfer to final 2,3-dihydrobenzofuran 3aa in
87% yield by treating themwith Cs2CO3 in 1,4-dioxane (Scheme 5b).
Based on above experiment results and literature reports, a
plausible reaction mechanism was proposed in Scheme 5c. Initially,
upon irradiation of aryl diazoacetatewith blue LED generated carbene
species with the release of molecule nitrogen [14]. Then, insertion of
carbene species into OꢀꢀH bond of 1a afforded product 8 [15]. Under
basic reaction conditions, deprotonation of 8 gave carbon anion
intermediate 9, which subsequently cyclized to produce 10. Finally,
protonation of 10 delivered final 2,3-dihydrobenzofuran 3aa.
In summary, we have developed a visible light and base
promoted O-H insertion/cyclization of para-quinone methides
with aryl diazoacetates. By using the strategy, a wide range of 2,3-
dihydrobenzofuran derivatives can be obtained in good yields and
moderate diastereoselectivities. More significantly, the successful
introduction of some useful complex structures into the 2,3-
dihydrobenzofuran heterocycles and synthetic transformation of
the final products further renders this approach attractive and
valuable. The further discovery of new visible light-promoted
carbene transfer reactions is currently underway in our laboratory.
(p) M. Sun, C. Ma, S.J. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 8703–8708:
(q) S. Zhang, X. Yu, J. Pan, et al., Org. Chem. Front. 6 (2019) 3799–3803:
(r) Z. Li, W. Wang, H. Jian, et al., Chin. Chem. Lett. 30 (2019) 386–388:
(s) X. Cheng, S.J. Zhou, G.Y. Xu, et al., Adv. Synth. Catal. 362 (2020) 523–527:
(t) S.J. Zhou, X. Cheng, C.X. Hu, et al., Sci. China Chem. 64 (2021) 61–65:
(u) J.P. Tan, H. Zhang, Z. Jiang, et al., Adv. Synth. Catal. 362 (2020) 1058–1063:
(v) S.F. Wu, M.S. Tu, Q.Q. Hang, et al., Org. Biomol. Chem. 18 (2020) 5388–5399.
[5] X.M. Chen, K.X. Xie, D.F. Yue, et al., Tetrahedron 74 (2018) 600–605.
[6] Y. Zhi, K. Zhao, C.V. Essen, K. Rissanen, D. Enders, Org. Chem. Front. 5 (2018)
1348–1351.
[7] L. Liu, Z. Yuan, R. Pan, et al., Org. Chem. Front. 5 (2018) 623–628.
[8] (a) J. Zhou, G. Liang, X. Hu, L. Zhou, H. Zhou, Tetrahedron 74 (2018) 1492–1496:
(b) J.P. Tan, P. Yu, J.H. Wu, et al., Org. Lett. 21 (2019) 7298–7302:
(c) G. Singh, S. Kumar, A. Chowdhury, R.V. Anand, J. Org. Chem. 84 (2019)
15978–15989:
(d) H. Lu, H.X. Zhang, C.Y. Tan, J. Org. Chem. 84 (2019) 10292–10305.
[9] K. Zielke, O. Kovác9, M. Winter, J. Pospíšil, M. Waser, Chem. Eur. J. 25 (2019)
8163–8168.
[10] (a) J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 4 (2011) 102–113:
(b) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 11 (2013) 2387–2403:
(c) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev.113 (2013) 5322–5363:
(d) M.N. Hopkinson, B. Sahoo, J.L. Li, F. Glorius, Chem. Eur. J. 20 (2014) 3874–
3886:
Declaration of competing interest
The authors report no declarations of interest.
Acknowledgments
(e) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075–10166:
(f) L. Marzo, S. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018)
10034–10072:
(g) Y.Z. Cheng, X. Zhang, S.L. You, Sci. Bull. 63 (2018) 809–811:
(h) L. Lu, J.L. Zhang, Chin. J. Org. Chem. 39 (2019) 3308–3309:
(i) B.G. Cai, J. Xuan, W.J. Xiao, Sci. Bull. 64 (2019) 337–350:
(j) Y. Chen, L.Q. Lu, D.G. Yu, C.J. Zhu, W.J. Xiao, Sci. China Chem. 62 (2019) 24–57:
(k) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55 (2019) 5408–5419:
(l) X.Y. Yu, Q.Q. Zhao, J. Chen, W.J. Xiao, J.R. Chen, Acc. Chem. Res. 53 (2020)
1066–1083:
We are grateful to the National Natural Science Foundation of
China (Nos. 21971001, 21702001), and the Start-up Grant from
Anhui University for financial support of this work.
4