ORGANIC
LETTERS
2007
Vol. 9, No. 8
1497-1499
Low-Valent Niobium-Catalyzed
Reduction of -Trifluorotoluenes
r,r,r
Kohei Fuchibe, Yoshitaka Ohshima, Ken Mitomi, and Takahiko Akiyama*
Department of Chemistry, Faculty of Science, Gakushuin UniVersity, 1-5-1 Mejiro
Toshima-ku, Tokyo 171-8588, Japan
Received February 1, 2007
ABSTRACT
In the presence of 5 mol % of niobium(V) chloride,
r,r,r-trifluorotoluene derivatives were reduced with lithium aluminum hydride to give
toluene derivatives in good yields. Stepwise, partial reduction of bis(trifluoromethyl)benzene derivative was also demonstrated.
The carbon-fluorine bond is one of the most stable single
bonds that constitute organic molecules.1 Fluorine substitu-
ents in organic compounds, in general, remain intact under
various vigorous conditions, and development of efficient
methods to transform the C-F bonds into new C-C bonds2
or C-X bonds3 has therefore attracted a great deal of
attention from synthetic organic chemists.
Although various stoichiometric and catalytic reductions of
perfluoroarenes,9 fluoroarenes,10 fluoroalkanes,10a and fluoro-
alkenes9d,11 have been reported to date, efficient and widely
applicable methods are still required.
It is well-recognized that R,R,R-trifluorotoluenes are one
of the most inert examples among a wide range of organo-
fluorine compounds. The trifluoromethyl groups on the
Reductions of the C-F bonds into C-H bonds are also
important transformations4 not only because of the funda-
mental importance on the C-F bond activation chemistry5
but also because of the close relationship to destruction of
atmospheric pollutants6 such as chlorofluorocarbons (CFCs,
ozone depletion)7 and perfluoroalkanes (greenhouse gases).8
(5) (a) Richmond, T. G. In ActiVation of UnreactiVe Bonds and Organic
Synthesis; Murai, S., Ed.; Topics in Organometallic Chemistry, Vol. 3;
Springer: Berlin, Germany, 1999; p 243. (b) Kiplinger, J. L.; Richmond,
T. G.; Osterberg, C. E. Chem. ReV. 1994, 94, 373. (c) Burdeniuc, J.; Jedlicka,
B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145.
(6) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. ReV. 2002, 102, 4009.
(7) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
(8) (a) Victor, D. G.; MacDonald, G. J. Climatic Change 1999, 42, 633.
(b) Roehl, C. M.; Boglu, D.; Bruehl, C.; Moortgat, G. K. Geophys. Res.
Lett. 1995, 22, 815. (c) Timms, P. L. J. Chem. Soc., Dalton Trans. 1999,
815.
(9) (a) Aizenberg, M.; Milstein, D. Science 1994, 265, 359. (b) Aizenberg,
M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674. (c) Kiplinger, J. L.;
Richmond, T. G. Chem. Commun. 1996, 1115. (d) Vela, J.; Smith, J. M.;
Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P.
L. J. Am. Chem. Soc. 2005, 127, 7857. See also: (e) Edelbach, B. L.; Jones,
W. D. J. Am. Chem. Soc. 1997, 119, 7734.
(10) (a) Kraft, B. M.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc.
2000, 122, 8559. (b)Yang, H.; Gao, H.; Angelici, R. J. Organometallics
1999, 18, 2285. (c) Young, R. J., Jr.; Grushin, V. V. Organometallics 1999,
18, 294. (d) Cellier, P. P.; Spindler, J.-F.; Taillefer, M.; Cristau, H.-J.
Tetrahedron Lett. 2003, 44, 7191. (e) Kuhl, S.; Schneider, R.; Fort, Y. AdV.
Synth. Catal. 2003, 345, 341. See also: (f) Imamoto, T.; Takeyama, T.;
Kusumoto, T. Chem. Lett. 1985, 1491. (g) Yus, M. Synlett 2001, 1197.
(11) (a) Kirkham, M. S.; Mahon, M. F.; Whittlesey, M. K. Chem.
Commun. 2001, 813. (b) Kraft, B. M.; Jones, W. D. J. Am. Chem. Soc.
2002, 124, 8681. (c) Noveski, D.; Braun, T.; Schulte, M.; Neumann, B.;
Stammler, H.-G. Dalton Trans. 2003, 4075.
(1) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(2) (a) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128,
15964. (b) Guo, H.; Kong, F.; Kanno, K.; He, J.; Nakajima, K.; Takahashi,
T. Organometallics 2006, 25, 2045. (c) Steffen, A.; Sladek, M. I.; Braun,
T.; Neumann, B.; Stammler, H.-G. Organometallics 2005, 24, 4057. (d)
Saeki, T.; Takashima, Y.; Tamao, K. Synlett 2005, 1771. (e) Yoshikai, N.;
Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 17978. (f) Terao,
J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646.
(g) Kim, Y. M.; Yu, S. J. Am. Chem. Soc. 2003, 125, 1696.
(3) (a) Bronnert, D. L. E.; Saunders, B. C. Tetrahedron 1960, 10, 160.
(b) Jo¨nsson, L.; Wistrand, L.-G. J. Org. Chem. 1984, 49, 3340. (c) Yus,
M.; Herrera, R. P.; Guijarro, A. Tetrahedron Lett. 2003, 44, 5025. (d)
Namavari, M.; Satyamurthy, N.; Phelps, M. E.; Barrio, J. R. Tetrahedron
Lett. 1990, 31, 4973. (e) Landini, D.; Albanese, D.; Mottadelli, S.; Penso,
M. J. Chem. Soc., Perkin Trans. 1 1992, 2309. (f) Begum, S. A.; Terao, J.;
Kambe, N. Chem. Lett. 2007, 36, 196.
(4) Paleta, O. In Organo-Fluorine Compounds; Baasner, B., Hagemann,
H., Tatlow, J. C., Eds.; Methods of Organic Chemistry, Vol. E 10b/Part 2;
Houben-Weyl: Stuttgart, Germany, 2000; p 306.
10.1021/ol070249m CCC: $37.00
© 2007 American Chemical Society
Published on Web 03/13/2007