pubs.acs.org/joc
Synthesis of Orthogonally Protected Disulfide
Bridge Mimetics
Andrew C. Tadd,*,† Kristian Meinander,†
‡
Kristina Luthman, and Erik A. A. Wallen
†
ꢀ
†Division of Pharmaceutical Chemistry, Faculty of Pharmacy,
PO Box 56, FI-00014, University of Helsinki, Helsinki,
Finland, and ‡Department of Chemistry-Medicinal
Chemistry, University of Gothenburg, SE-41296,
€
Goteborg, Sweden
Received September 17, 2010
FIGURE 1. Internal disulfide bridge (1) and orthogonally pro-
tected disulfide bridge mimetics (2-5).
peptide in its biologically active conformation, as demon-
strated by helical peptide stapling.4
We are primarily interested in bicyclic peptides with non-
terminal disulfide bridges. Interest in improving the in vivo
stability of these peptides has led us to require structures 2-5
possessing inexpensive, orthogonal protecting groups.5 To
our knowledge, there is no procedure for the synthesis of
orthogonally protected mimetics 2-4 in the literature. While
routes to orthogonally protected 5 have been disclosed, they
either require a cumbersome, lengthy synthesis or do not
possess the appropriate protecting groups for our study.6
Herein, we report convenient routes to orthogonally pro-
tected disulfide bridge mimetics 2-5 employing a copper-
mediated organozinc/haloalkyne coupling and a ruthenium-
catalyzed cross-metathesis reaction as key steps.
Concise routes to four orthogonally protected, enantio-
pure disulfide bridge mimetics are reported. These four
dicarba analogues possess an alkyne, an (E)-alkene, a (Z)-
alkene, and an alkane as substitutes for the disulfide bridge.
Selective deprotection of one of these mimetics is also
illustrated.
Our initial goal was the synthesis of mimetic 6. The require-
ment of an orthogonally protected, enantiopure product
severely limited the number of viable synthetic strategies. We
envisaged that employing the copper-mediated organozinc/
Cyclization stabilizes peptides and in certain cases may be
essential for biological activity. Disulfide bridge formation is
the most common mechanism for peptide cyclization. This
stabilizing effect is exemplified by a unique subclass of
biologically active peptides, known as cyclotides, which
possess multiple interlinked disulfide bridges and are re-
nowned for their resistance to thermal, chemical, and pro-
teolytic decomposition.1 Despite the stabilizing effect of
disulfide bridges on many peptides, the disulfide bond may
undergo different decomposition reactions and can also be
easily reduced in vivo to the open chain peptide.2 It has been
reported that replacing a disulfide bridge with an isosteric
carbon analogue (Figure 1, 2-5) can considerably increase
the bioavailabilty and in vivo stability of a peptide, without
significantly reducing biological activity.3 In addition, these
isosteric carbon linkers may also be used to constrain a
(4) (a) Schafmeister, C. E.; Po, J.; Verdine, G. L. J. Am. Chem. Soc. 2000,
122, 5891. (b) Walensky, L. D.; Kung, A. L.; Escher, I.; Malia, T. J.; Barbuto,
S.; Wright, R. D.; Wagner, G.; Verdine, G. L.; Korsmeyer, S. J. Science 2004,
305, 1466. (c) Kim, Y.-W.; Kutchukian, P. S.; Verdine, G. L. Org. Lett. 2010,
12, 3046.
(5) Synthesis of nonorthogonally protected disulfide bridge mimetics
(selected examples): (a) Williams, R. M.; Yuan, C. J. Org. Chem. 1992, 57,
6519. (b) Kremminger, P.; Undheim, K. Tetrahedron 1997, 53, 6925. (c) Gao,
Y.; Lane-Bell, P.; Vederas, J. C. J. Org. Chem. 1998, 63, 2133. (d) Hiebl, J.;
Blanka, M.; Guttman, A.; Kollmann, H.; Leitner, K.; Mayrhofer, G.;
Rovenszky, F.; Winkler, K. Tetrahedron 1998, 54, 2059. (e) O’Leary, D. J.;
Miller, S. J.; Grubbs, R. H. Tetrahedron Lett. 1998, 39, 1689. (f) Williams,
R. M.; Liu, J. J. Org. Chem. 1998, 63, 2130. (g) Garrard, E. A.; Borman,
E. C.; Cook, B. N.; Pike, E. J.; Alberg, D. G. Org. Lett. 2000, 2, 3639. (h)
Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron 2001, 57, 6447. (i) IJsselstijn,
M.; Kaiser, J.; van Delft, F. L.; Schoemaker, H. E.; Rutjes, F. P. J. T. Amino
Acids 2003, 24, 263. (j) Robinson, A. J.; Elaridi, J.; Patel, J.; Jackson, W. R.
Chem. Commun. 2005, 5544. (k) Schmidtmann, F. W.; Benedum, T. E.;
McGarvey, G. J. Tetrahedron Lett. 2005, 46, 4677. (l) Elaridi, J.; Patel, J.;
Jackson, W. R.; Robinson, A. J. J. Org. Chem. 2006, 71, 7538.
(1) (a) Colgrave, M. L.; Craik, D. J. Biochemistry 2004, 43, 5975. (b)
(6) Synthesis of orthogonally protected mimetic 5: (a) Nutt, R. F.;
Strachan, R. G.; Veber, D. F.; Holly, F. W. J. Org. Chem. 1980, 45, 3078.
(b) Hiebl, J.; Kollmann, H.; Rovenszky, F.; Winkler, K. Bioorg. Med. Chem.
Lett. 1997, 7, 2963. (c) Lange, M.; Fischer, P. M. Helv. Chim. Acta 1998, 81,
2053. (d) Aguilera, B.; Wolf, L. B.; Nieczypor, P.; Rutjes, F. P. J. T.;
Overkleeft, H. S.; van Hest, J. C. M.; Schoemaker, H. E.; Wang, B.; Mol,
ꢁ
ꢁ
Cemazar, M.; Craik, D. J. Int. J. Pept. Res. Ther. 2006, 12, 253.
(2) Manning, C. M.; Chou, D. K.; Murphy, B. M.; Payne, R. W.;
Katayama, D. S. Pharm. Res. 2010, 27, 544.
(3) (a) Veber, D. F.; Strachan, R. G.; Bergstrand, S. J.; Holly, F. W.;
Homnick, C. F.; Hirschmann, R. J. Am. Chem. Soc. 1976, 98, 2367. (b)
Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J. C. J. Org. Chem. 2005,
70, 7799 and references cited therein. (c) Derksen, D. J.; Stymiest, J. L.;
Vederas, J. C. J. Am. Chem. Soc. 2006, 128, 14252.
€
J. C.; Furstner, A.; Overhand, M.; van der Marel, G. A.; van Boom, J. H.
J. Org. Chem. 2001, 66, 3584. (e) Hernandez, N.; Martı
ꢀ
´
n, V. S. J. Org. Chem.
2001, 66, 4934.
DOI: 10.1021/jo1018427
r
Published on Web 12/22/2010
J. Org. Chem. 2011, 76, 673–675 673
2010 American Chemical Society