4394
K. Piecyk et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4391–4395
McFarland, C.; Stepinski, J.; Jankowska-Anyszka, M.; Darzynkiewicz, E.; Davis,
R. E. Mol. Cell. Biol. 2010, 30, 1958.
6. (a) Lall, S.; Friedman, C. C.; Jankowska-Anyszka, M.; Stepinski, J.;
Darzynkiewicz, E.; Davis, R. E. J. Biol. Chem. 2004, 279, 45573; (b) Cheng, G.;
Cohen, L.; Mikhli, C.; Jankowska-Anyszka, M.; Stepinski, J.; Darzynkiewicz, E.;
Davis, R. E. Mol. Biochem. Parasitol. 2007, 153, 95.
7. (a) Jankowska-Anyszka, M.; Lamphear, B. J.; Aamondt, E. J.; Harrington, T.;
Darzynkiewicz, E.; Stolarski, R.; Rhoads, R. E. J. Biol. Chem. 1998, 273, 10538; (b)
Keiper, B. D.; Lamphear, B. J.; Deshpande, A. M.; Jankowska-Anyszka, M.;
Aamodt, E. J.; Blumenthal, T.; Rhoads, R. E. J. Biol. Chem. 2000, 275, 10590.
8. Liu, W.; Zhao, R.; McFarland, C.; Kieft, J.; Niedzwiecka, A.; Jankowska-Anyszka,
M.; Stepinski, J.; Darzynkiewicz, E.; Jones, D. N. M.; Davis, R. E. J. Biol. Chem.
2009, 284, 31333.
9. Miyoshi, H.; Dwyer, D. S.; Keiper, B. D.; Jankowska-Anyszka, M.; Darzynkiewicz,
E.; Rhoads, R. E. EMBO J. 2002, 21, 4680.
10. Liu, W.; Jankowska-Anyszka, M.; Piecyk, K.; Dickson, L.; Wallace, A.;
Niedzwiecka, A.; Stepinski, J.; Stolarski, R.; Darzynkiewicz, E.; Kieft, J.; Zhao,
R.; Jones, D. N. M.; Davis, R. E. Nucleic Acids Res. 2011, 39, 8820.
11. Rutkowska-Wlodarczyk, I.; Stepinski, J.; Dadlez, M.; Darzynkiewicz, E.;
Stolarski, R.; Niedzwiecka, A. Biochemistry 2008, 47, 2710.
12. Burgess, K.; Cook, D. Chem. Rev. 2000, 100, 2047.
Figure 2. DcpS hydrolysis of labeled cap analogues. DcpS reactions were carried out
as previously described and the labeled substrates and products were separated by
PEI-cellulose thin layer chromatography (TLC), plates developed in 0.45 M ammo-
nium sulfate, and labeled substrate and products detected by autoradiography.18
The plates correspond to (A) 14C-labeled MMG cap, (B) 14C-labeled TMG cap; lane
13. (a) Fukuoka, K.; Suda, F.; Suzuki, R.; Takaku, H.; Ishikawa, M.; Hata, T.
Nucleosides Nucleotides 1994, 13, 1557; (b) Stepinski, J.; Bretner, M.; Jankowska,
M.; Felczak, K.; Stolarski, R.; Wieczorek, Z.; Cai, A. L.; Rhoads, R. E.; Temeriusz,
A.; Haber, D.; Darzynkiewicz, E. Nucleosides Nucleotides 1995, 14, 717.
14. General procedure for a synthesis of m7⁄GpppG cap analogues labeled with 13C or
14C. GpppG was prepared by coupling of imidazolide derivative of guanosine
50-monophosphate (GMP) (21 mg, 0.05 mmol) with guanosine 50-diphosphate
(27 mg, 0.05 mmol) in anhydrous conditions in the presence of ZnCl2 (50 mg,
0.37 mmol) as previously described.13 GpppG (20 mg, 0.02 mmol) was further
methylated with appropriate methyl iodide, labeled with 13C or 14C
(0.04 mmol) in anhydrous DMSO at room temperature for 2 h. The reaction
mixture was poured into water and extracted three times with diethyl ether.
Aqueous phase was purified on DEAE–Sephadex using a 0–0.8 M gradient of
TEAB. Final products were obtained as colorless crystals ([13C] m7⁄GpppG, (1)
8.4 mg, 0.01 mmol, 52%, [14C] m7⁄GpppG, (2) 7.8 mg, 0.0096 mmol, 48%); [13C]
m7⁄GpppG MS-ESI: m/z calcd. 804.1024, Found: 804.1183; 1H NMR (D2O,
500 MHz) d 8.03 (s, 1H; H-8, G), 5.91 (d,1H; H-10, m7G), 5.82 (d, 1H; H-10, G),
4.67 (t, 1H, H-20, G), 4.51–4.48 (m, 2H; H-20, m7G; H-30, G), 4.43–4.35 (m, 4H;
H-30, m7G, H-40, G, H-40, m7G, H-50, G), 4.32–4.26 (m, 3H; H-50, H-500, m7G; H-
500, G), 4.06 (d, 3H; 7-CH3, J1H,13C = 145 Hz); 13C NMR (D2O, 125 MHz, H1
1—14
C C cap analogue treated with C. elegans DcpS
cap analogue, lane 2—14
(expressed and purified as described18), lane 3—14C cap analogue treated with A.
suum DcpS (GenBank Accession number (ADB92583), expressed and purified as
described18). ⁄indicates the position of the label.
To evaluate the 14C cap analogues in a functional assay, we car-
ried out decapping experiments (Fig. 2) using A. suum and C. ele-
gans DcpS, the scavenger decapping enzymes. DcpS cleaves
mono- as well as trimethylated cap regioselectively between b
and
c
phosphates of the 50,50-triphosphate bridge to release
m7GMP or m32,2,7GMP and a downstream oligonucleotide. This
simple experiment indicated that incubation of nematode DcpS
with the labeled m7⁄GpppG or m32,2,7⁄GpppG led to labeled
m7⁄Gp and m32,2,7⁄Gp cap-derived products, respectively, as illus-
trated by TLC and autoradiography (Fig. 2).
decouple 500 MHz) d 36.24; 31P NMR (D2O, 202 MHz) d ꢀ10.31 (1P,
a), ꢀ10.40
(1P
c), ꢀ21.91 (1P, b).
15. Jemielity, J.; Stolarski, R.; Darzynkiewicz, E. Nucloesides, Nucleotides, Nucleic
Acids 2007, 26, 1315.
16. N2-fluoro-20,30,50-O-triacetyl-O6-[2-(4-nitrophenyl)ethyl]inosine
(3)
The
In conclusion we have developed a simple and short method for
20,30,50-tri-O-acetylguanosine was prepared from guanosine using acetic
anhydride in the presence of triethylamine and N,N-(dimethylamino)
pyridine using a procedure modified from Nair et al. (J. Am. Chem. Soc., 1987,
109, 7223). In the next step a suspension of 20,30,50-tri-O-acetylguanosine
(2.37 g, 5.8 mmol), triphenylphosphine (2.28 g, 8.7 mmol) and 2-(4-
nitrophenyl)ethanol (1.45 g, 8.7 mmol) in anhydrous toluene was stirred for
30 min and diisopropylazodicarboxylate (1.4 mL) was added dropwise over a
period of 45 min. The reaction mixture was kept for 12 h at rt. The solvent was
evaporated and the residual oil was purified by column chromatography on
silica gel with chloroform to produce a pure product, 20,30,50-tri-O-acetyl-O6-
[2-(4-nitrophenyl)ethyl]guanosine, of yellowish crystals, 2.26 g (70%).1H NMR
(200 MHz, CDCl3) d 8.17 (d, 2H), 7.72 (s, 1H), 7.49 (d, 2H), 6.05–5.91 (m, 2H),
5.87–5.75 (m, 1H), 4.73 (t, J = 6.7 Hz, 2H), 4.50–4.36 (m, 3H), 3.28 (t, 6.7 2H),
2.14 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H); m/z: calcd for C24H26N6O10(M+H)+:
559.1783, found: 559.1784.
specific labeling of mono- and trimethylated caps with 13C and 14
C
isotopes. The compounds will be extremely useful as tools for NMR
studies (13C), for monitoring chemical and enzymatic reactions
(
14C), or to synthesize RNA containing the 14C labeled cap struc-
tures by in vitro transcription.
Acknowledgment
This work was partially supported by a Grant N N301 096339
from the Ministry of Science and Higher Education, Poland and
Grants R0149558 and AI080805 from National Institutes of Health,
USA. (to R.E.D.). We thank Dr Weizhi Liu for providing DcpS en-
zymes and members of the Davis lab for their help with the DcpS
assays. We are also grateful to Prof. Darzynkiewicz for all kind of
support.
In the next step dry 20,30,50-tri-O-acetyl-O6-[2-(4-nitrophenyl)ethyl]guanosine
(1 g, 1.79 mmol) in polypropylene tube under nitrogen was dissolved in
anhydrous pyridine (6.75 mL, 0.082 mol). The tube was placed in a dry ice/
acetonitrile cooling bath (ꢀ35 to ꢀ45 °C) and 70% HF/pyridine solution (12 mL,
0.42 mol) was added dropwise over a period of 5 min to 45% final HF. The
reaction mixture was stirred for 15 min and t-butyl nitrite (0.54 mL, 4.5 mmol)
was added. After 1 h, the reaction was quenched at 0 °C by slowly pouring the
reaction mixture into an aqueous K2CO3 solution (28.5 g in 25 mL of water) and
then extracted three times with ethyl acetate. The organic layers were
collected, dried over anhydrous Na2SO4 and evaporated to dryness.
Purification by column chromatography using as eluate 60:1 CH2Cl2:MeOH
References and notes
1. (a) Furuichi, Y.; Shatkin, A. J. Adv. Virus Res. 2000, 55, 135; (b) Topisirovic, I.;
Svitkin, Y. V.; Sonenberg, N.; Shatkin, A. J. WIREs RNA 2011, 2, 277.
gave 0.85 g (85%) of product (3); TLC silica gel, CH2Cl2/MeOH, 60:1 RF = 0.4; 1
H
2. (a) Matsuo, H.; Li, H.; McGuire, A. M.; Fletcher, C. M.; Gingras, A.-C.; Sonenberg,
N.; Wagner, G. Nat. Struct. Mol. Biol. 1997, 4, 717; (b) Marcotrigiano, J.; Gingras,
A.-C.; Sonenberg, N.; Burley, S. K. Cell 1997, 89, 951; (c) Cai, A.; Jankowska-
Anyszka, M.; Centers, A.; Chlebicka, L.; Stepinski, J.; Stolarski, R.;
Darzynkiewicz, E.; Rhoads, R. E. Biochemistry 1999, 38, 8538; (d)
Niedzwiecka, A.; Marcotrigiano, J.; Stepinski, J.; Jankowska-Anyszka, M.;
Wyslouch-Cieszynska, A.; Dadlez, M.; Gingras, A.-C.; Mak, P.; Darzynkiewicz,
E.; Sonenberg, N.; Burley, S.; Stolarski, R. J. Mol. Biol. 2002, 319, 615.
3. (a) Thomas, J. D.; Conrad, R. C.; Blumenthal, T. Cell 1988, 54, 533; (b) Liou, R. F.;
Blumenthal, T. Mol. Cell. Biol. 1990, 10, 1764.
4. (a) Van Doren, K.; Hirsh, D. Mol. Cell. Biol. 1990, 10, 1769; (b) Maroney, P. A.;
Hannon, G. J.; Nilsen, T. W. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 709.
NMR (700 MHz, CDCl3) d 8.21–8.15 (m, 2H), 8.08 (s, 1H), 7.50 (d, 2H), 6.13 (d,
J = 5.6 Hz, 1H), 5.82 (t, J = 4.9 Hz, 1H), 5.60–5.55 (m, 1H), 4.84 (t, J = 6.7 Hz, 2H),
4.46–4.42 (m, 2H), 4.38–4.36 (m, 1H), 3.32 (t, J = 6.7 Hz, 2H), 2.15 (s, 6H), 2.08
(s, 3H).m/z: calcd for C24H24FN5O10 (M+H)+: 562.1579, found: 562.1581.
Synthesis of 13C labeled m32,2,7⁄GpppG (8) N2-fluoro-20,30,50-O-triacetyl-O6-[2-(4-
nitrophenyl)ethyl]inosine (3, 250 mg, 0.45 mmol) was dissolved in 2 mL of
aqueous solution of DMSO/AcCN/H2O/Et3N and
(
13CH3)2NH (1.8 mmol)
was added. The reaction mixture was stirred at 60 °C for 4 h until the
fluoronucleoside completely disappeared. After completion of the substitution
reaction, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was added to the reaction
mixture followed by the addition of 2.75 mL a mixture of 0.5 M NaOH in
THF/MeOH/NaOHaq (5:4:2). The solvent was evaporated and the residual oil
was purified by column chromatography on silica gel with CH2Cl2/MeOH (6:1)
5. (a) Darzynkiewicz, E.; Stepinski, J.; Ekiel, I.; Haber, D.; Sijuwade, T.; Tahara, S.
M. Nucleic Acids Res. 1988, 16, 8953; (b) Wallace, A.; Filbin, M. E.; Veo, B.;