Alves et al. Parasites Vectors
(2020) 13:59
Page 13 of 13
11. Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, Duchêne M.
Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are
reduced by the favin enzyme thioredoxin reductase and disrupt the cel‑
lular redox system Implications for nitroimidazole toxicity and resistance.
Mol Microbiol. 2009;72:518–36.
12. Schwebke JR, Barrientes FJ. Prevalence of Trichomonas vaginalis isolates
with resistance to metronidazole and tinidazole. Antimicrob Agents
Chemother. 2006;50:4209–10.
13. Kirkcaldy RD, Augostini P, Asbel LE, Bernstein KT, Kerani RP, Mettenbrink
CJ, et al. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities,
STD surveillance network, 2009–2010. Emerg Infect Dis. 2012;18:939–43.
14. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guide‑
lines, 2015. MMWR recommended reports. Atlanta: Center for Disease
Control; 2015.
15. Das S, Huengsberg M, Shahmanesh M. Treatment failure of vaginal tricho‑
moniasis in clinical practice. Int J STD AIDS. 2005;16:284–6.
16. Munagala NR, Wang CC. Adenosine is the primary precursor of all
purine nucleotides in Trichomonas vaginalis. Mol Biochem Parasitol.
2003;127:143–9.
17. Sato D, Nozaki T. Methionine gamma‑lyase: the unique reaction mecha‑
nism, physiological roles, and therapeutic applications against infectious
diseases and cancers. IUBMB Life. 2009;61:1019–28.
18. Setzer M, Byler K, Ogungbe I, Setzer W. Natural products as new treat‑
ment options for trichomoniasis: a molecular docking investigation. Sci
Pharm. 2017;85:5.
19. Dos Santos Filho JM, de Queiroz E Silva DMA, Macedo TS, Teixeira HMP,
Moreira DRM, Challal S, et al. Conjugation of N‑acylhydrazone and
1,2,4‑oxadiazole leads to the identifcation of active antimalarial agents.
Bioorganic Med Chem. 2016;24:5693–701.
20. Do Amaral DN, Cavalcanti BC, Bezerra DP, Ferreira PMP, De Castro RP,
Sabino JR, et al. Docking, synthesis and antiproliferative activity of
N‑acylhydrazone derivatives designed as combretastatin A4 analogues.
PLoS ONE. 2014;9:e85380.
21. Cachiba TH, Carvalho BD, Carvalho DT, Cusinato M, Prado CG, Dias ALT.
Síntese e avaliação preliminar da atividade antibacteriana e antifúngica
de derivados N‑acilidrazônicos. Quim Nova. 2012;35:1566–9.
22. Zhang H, Kunadia A, Lin Y, Fondell JD, Seidel D, Fan H. Identifcation
of a strong and specifc antichlamydial N‑acylhydrazone. PLoS ONE.
2017;12:e0185783.
23. Lukevits E, Demicheva L. Biological activity of furan derivatives (review).
Chem Heterocycl Compd. 1993;29:243–67.
24. Banerjee R, Kumar HKS, Banerjee M. Medicinal signifcance of furan
derivatives: a review. Int J Rev Life Sci. 2012;2:7–16.
25. Keay BA, Dibble PW. In: Katritzky AR, Rees CW, Scriven EFV, editors.
In: Comprehensive heterocyclic chemistry II, a review of literature
1982–1995: the structure, reactions, synthesis, and uses of heterocyclic
compounds. 1st ed. Oxford: Pergamon Press; 1996. p. 395–436.
26. de Faria Cardoso LN, Nogueira TCM, Kaiser CR, Wardell JL, Wardell SMSV,
de Souza MVN. Synthesis and anti‑tubercular activity of thienyl and
furanyl derivatives. Mediterr J Chem. 2016;5:356–66.
33. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efcient optimization, and multi‑
threading. J Comput Chem. 2010;31:455–61.
34. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison
GR. Avogadro: an advanced semantic chemical editor, visualization, and
analysis platform. J Cheminform. 2012;4:17.
35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al.
AutoDock4 and AutoDockTools4: automated docking with selective
receptor fexibility. J Comput Chem. 2009;30:2785–91.
36. da Carapina Silva C, Pacheco BS, das Neves RN, Dié Alves MS, Sena‑Lopes
A, Moura Â, et al. Antiparasitic activity of synthetic curcumin monocar‑
bonyl analogues against Trichomonas vaginalis. Biomed Pharmacother.
2019;111:367–77.
37. McClelland RS, Sangaré L, Hassan WM, Lavreys L, Mandaliya K, Kiarie
J, et al. Infection with Trichomonas vaginalis increases the risk of HIV‑1
acquisition. J Infect Dis. 2007;195:698–702.
38. Van Der Pol B, Kwok C, Pierre‑Louis B, Rinaldi A, Salata RA, Chen P‑L, et al.
Trichomonas vaginalis infection and human immunodefciency virus
acquisition in African women. J Infect Dis. 2008;197:548–54.
39. Allsworth JE, Ratner JA, Peipert JF. Trichomoniasis and other sexually
transmitted infections: results from the 2001–2004 national health and
nutrition examination surveys. Sex Transm Dis. 2009;36:738–44.
40. Kissinger P. Trichomonas vaginalis: a review of epidemiologic, clinical and
treatment issues. BMC Infect Dis. 2015;15:307.
41. dos Santos Filho JM, Moreira DRM, de Simone CA, Ferreira RS, McKerrow
JH, Meira CS, et al. Optimization of anti‑Trypanosoma cruzi oxadiazoles
leads to identifcation of compounds with efcacy in infected mice.
Bioorg Med Chem. 2012;20:6423–33.
42. Meneses‑Marcel A, Rivera‑Borroto OM, Marrero‑Ponce Y, Montero A,
Machado Tugores Y, Escario JA, et al. New antitrichomonal drug‑like
chemicals selected by bond (edge)‑based TOMOCOMD‑CARDD descrip‑
tors. J Biomol Screen. 2008;13:785–94.
43. Navin P, Sarvil P, Amit P, Divyesh P, Dhansukh R, Moo‑Puc R, et al. Synthesis
and biological evaluation of newer 1,3,4‑oxadiazoles incorporated with
benzothiazepine and benzodiazepine moieties. Zeitschr Naturforschung
C. 2017;72:133–46.
44. Kulda J. Trichomonads, hydrogenosomes and drug resistance. Int J Parasi‑
tol. 1999;29:199–212.
45. Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, et al. Impor‑
tance of the lipid peroxidation biomarkers and methodological aspects
for malondialdehyde quantifcation. Quim Nova. 2009;32:169–74.
46. Zang Y, Wang W‑H, Wu S‑W, Ealick SE, Wang CC. Identifcation of a subver‑
sive substrate of Trichomonas vaginalis purine nucleoside phosphorylase
and the crystal structure of the enzyme‑substrate complex. J Biol Chem.
2005;280:22318–25.
47. Rinaldo‑Matthis A, Wing C, Ghanem M, Deng H, Wu P, Gupta A, et al.
Inhibition and structure of Trichomonas vaginalis purine nucleoside
phosphorylase with picomolar transition state analogues. Biochemistry.
2007;46:659–68.
48. Edwards DI. Nitroimidazole drugs‑action and resistance mechanisms I.
Mechanism of action. J Antimicrob Chemother. 1993;31:9–20.
49. ISO‑International Organazition for Standardization. ISO 10993‑5:2009‑Bio‑
logical evaluation of medical devices. Part 5: tests for in vitro cytotoxicity.
Switzerland: International Organazition for Standardization; 2009.
50. Jung O, Smeets R, Hartjen P, Schnettler R, Feyerabend F, Klein M, et al.
Improved in vitro test procedure for full assessment of the cytocompat‑
ibility of degradable magnesium based on ISO 10993‑5/‑12. Int J Mol Sci.
2019;20:255.
27. Diamond LS. The establishment of various trichomonads of animals and
man in axenic cultures. J Parasitol. 1957;43:488–90.
28. Sena‑Lopes Â, das Neves RN, Bezerra FSB, de Oliveira Silva MT, Nobre PC,
Perin G, et al. Antiparasitic activity of 1,3‑dioxolanes containing tellurium
in Trichomonas vaginalis. Biomed Pharmacother. 2017;89:284–7.
29. Rigo GV, Petro‑silveira B, Devereux M, Mccann M, Luis A, Tasca T. Anti‑
Trichomonas vaginalis activity of metallodrugs and synergistic efect with
metronidazole. Parasitology. 2019;146:1179–83.
30. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues
thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.
31. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny
R, et al. SWISS‑MODEL: homology modelling of protein structures and
complexes. Nucleic Acids Res. 2018;46:W296–303.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional afliations.
32. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,
et al. UCSF Chimera? A visualization system for exploratory research and
analysis. J Comput Chem. 2004;25:1605–12.