C. Jocher et al. · Cobalt Complexation with Unsymmetrical Tripodal Ligands
671
the composition [CoIII4(H2-3)4CoII2(HOMe)2Cl2(µ- bly deprotonated with one alkoxo function bridging
two metal centers and the other one coordinating to
only one metal. EPR experiments established that the
tetranuclear complex retains its structure in methanol
or DMF solution.
OH)4]Cl24CH3OH·H2O [6]Cl2 ·4CH3OH·H2O.
Complex [6]2+ is a dicationic hexanuclear CoIII
4
CoII cluster (Fig. 2). Six cobalt atoms, four lig-
2
and molecules, four bridging hydroxo anions, two
In summary, coordination of both H5-1 or H4-3 pro-
methanol molecules and two chloride ligands form
motes the oxidation of CoII to CoIII. Further variations
a centrosymmetric wheel [CoIICl(CH3OH)(µ-H2-
of aliphatic tripodal ligands may provide more inter-
3)CoIII(µ-OH)2CoIII(µ-H2-3)]22+. One (Co1-Co3) or
esting structural arrangements in cobalt coordination
both (Co2-Co3∗) of the alkoxo groups of each coor-
chemistry, because the ligand topology is one govern-
dinated ligand act as bridges between CoIII and CoII
ing force in the cluster formation aside from the nature
centers. The assignment of cobalt oxidation states is
of the metal site or the solubility of the resulting coor-
consistent with the observed Co-O bond lengths, which
II
dination compounds.
are longer for Co (average: 2.04 A) than for CoIII (av-
˚
˚
erage 1.91 A). Similar values are found in literature
[14– 17].
Acknowledgements
The hexanuclear arrangement of the cobalt atoms
in [6]2+ is unique. A tetranuclear CuII2CoIII ring is This research was supported by the Deutsche Forschungsge-
2
meinschaft. C. J. thanks the International Graduate School of
Chemisty NRW for a 3 year scholarship.
known with diethanolamine as a ligand [18]. In this
molecule diethanolamine coordinated to CoIII is dou-
[1] a) V. F. Vasil’eva, O. Yu. Lavrova, N. M. Dyatlova,
V. G. Yashunskii, J. Gen. Chem. USSR 38, 468 (1968);
b) R. M. Peck, R. K. Preston, H. J. Creech, J. Am.
Chem. Soc. 81, 3984 (1959); c) T. J. Lotz, T. A. Kaden,
Helv. Chim. Acta 61, 1376 (1978).
[2] a) for a review see: A. G. Blackman, Polyhedron 24, 1
(2005); b) V. F. Vasil’eva, O. Yu. Lavrova, N. M. Dy-
atlova, V. G. Yashunskii, J. Gen. Chem. USSR 36, 688
(1966); c) A. M. Dittler-Klingemann, F. E. Hahn, Inorg.
Chem. 35, 1996 (1996); d) A. M. Dittler-Klingemann,
C. Orvig, F. E. Hahn, F. Thaler, C. D. Hubbard, R. van
Eldik, S. Schindler, I. Fabian, Inorg. Chem. 35, 7798
(1996); e) F. Thaler, C. D. Hubbard, F. W. Heinemann,
R. van Eldik, S. Schindler, I. Fabian, A. M. Dittler-
Klingemann, F. E. Hahn, C. Orvig, Inorg. Chem. 37,
4022 (1998); f) C. Ochs, F. E. Hahn, T. Lu¨gger, Eur. J.
Inorg. Chem. 1279 (2001).
[7] F. E. Hahn, C. Jocher, T. Lu¨gger, Z. Naturforsch. 59b,
855 (2004).
[8] F. E. Hahn, C. Jocher, T. Lu¨gger, T. Pape, Z. Anorg.
Allg. Chem. 629, 2341 (2003).
[9] J. Xin, Y. Xu, S. Li, W. Sun, K. Yu, W. Tang, Inorg.
Chem. 40, 2394 (2001).
[10] G. M. Sheldrick, SHELXS, Acta Crystallogr. A46, 467
(1990).
[11] G. M. Sheldrick, SHELXL, Universita¨t Go¨ttingen
(1997).
[12] a) S. M. McElvain, G. Stork, J. Am. Chem. Soc. 68,
1049 (1946); b) F. E. Hahn, S. Rupprecht, Chem. Ber.
124, 481 (1991).
[13] N. M. Yoon, H. C. Brown, J. Am. Chem. Soc. 90, 2927
(1968).
[14] a) F. A. Cotton, R. C. Elder, Inorg. Chem. 4, 1145
(1965); b) J. H. Binks, G. J. Dorward, R. A. Howie,
G. P. McQuillan, Inorg. Chim. Acta 49, 251 (1981);
c) M. B. Hursthouse, M. A. Laffey, P. T. Moore, D. B.
New, P. R. Raithby, P. Thornton, J. Chem. Soc., Dal-
ton Trans. 307 (1982); d) F. A. Cotton, R. Eiss, J. Am.
Chem. Soc. 90, 38 (1968).
[3] a) C. Ochs, F. E. Hahn, R. Fro¨hlich, Eur. J. Inorg.
Chem. 2427 (2001); b) B. Song, J. Reuber, C. Ochs,
F. E. Hahn, T. Lu¨gger, C. Orvig, Inorg. Chem. 40, 1527
(2001).
[4] F. E. Hahn, C. Ochs, T. Lu¨gger, R. Fro¨hlich, Inorg.
Chem. 43, 6101 (2004).
[15] H. Ackermann, R. Leo, W. Massa, K. Dehnicke, Z. Na-
turforsch. 53b, 1241 (1998).
[5] C. Ochs, F. E. Hahn, R. Fro¨hlich, Chem. Eur. J. 6, 2193
(2000).
[16] a) R. Siefert, T. Weyhermu¨ller, P. Chaudhuri, J. Chem.
Soc., Dalton Trans. 4656 (2000); b) F. A. Cotton,
R. Hu¨gel, R. Eiss, Inorg. Chem. 7, 18 (1968).
[17] a) T. C. Higgs, C. J. Carrano, Inorg. Chem. 36, 291
(1997); b) M. Mikuriya, N. Nagao, K. Kondo, Chem.
Lett. 516 (2000); c) E. Larsen, S. Larsen, G. B. Paulsen,
J. Springborg, D.-N. Wang, Acta Chem. Scand. 48,
107 (1994); d) G. H. Searle, T. W. Hambley, Aust.
[6] a) J. A. Conolly, J. H. Kim, M. Banaszczyk, M. Drouin,
J. Chin, Inorg. Chem. 34, 1094 (1995); b) J. A. Conolly,
M. Banaszczyk, R. C. Hymes, J. Chin, Inorg. Chem.
33, 665 (1994); c) J. Chin, M. Banaszczyk, V. Ju-
bian, X. Zhou, J. Am. Chem. Soc. 111, 186 (1989);
d) J. Chin, M. Banaszczyk, J. Am. Chem. Soc. 111,
4103 (1989).
Unauthenticated
Download Date | 1/15/19 6:18 AM