´
´
J. Jazwinski, A. Sadlej / Tetrahedron: Asymmetry 20 (2009) 2331–2343
2343
where coefficient a denotes a non-ideal inversion (0 < a < 1). If one
signal was inverted, the evolutions of inverted and non-perturbed
signals were described by Eqs. (2) and (3), respectively:
the equation exp(ꢀtm/2k) = (1 ꢀ b)/(1 + b), where tm denotes mixing
time and b states the ratio of the cross peak to diagonal peak
volume.24
M1ðtÞ=M1ð1Þ ¼ 1 ꢀ 0:5ð1 þ aÞðeꢀðrþ2kÞt þ eꢀrt
Þ
ð2Þ
ð3Þ
References
M1ðtÞ=M1ð1Þ ¼ 1 ꢀ 0:5ð1 þ aÞðꢀeꢀðrþ2kÞt þ eꢀrt
Þ
1. Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Claredon Press:
Oxford, 1993. Chapter 7, pp 431.
The measurement and exchange rate estimation were performed
for 1:0.5, 1:2 and 1:4 mixtures of Rh2TFA4 and 1, that is, for the
solutions containing the 1:1 adduct, 1:2 adduct or equimolar
amounts of the 1:2 adduct and free amine, respectively.Evolutions
of magnetization M(t) as a function of time were obtained from
selective inversion recovery experiment. Either NCH3 signals (first
two samples) or CCH3 signals (1:4 sample) were used. Typically,
both signals of each sample were inverted, one by one; giving to-
tally four data sets for each sample at given temperature. The initial
value of a, essential for MinErr algorithm, was estimated on the ba-
sis of M(t) and M(1), taken from the first experiment (VD delay of
10 ms); guess k value was assumed to be 1 sꢀ1. The parameters a
and k were obtained by curve fitting procedure, using Eq. (2) for in-
verted signal and (3) for non-inverted signal. In the theory, one can
perform a fitting procedure using three parameters, k, a and r simul-
taneously. However, the attempt to do it often resulted in non-real-
istic values, without physical meaning (for instant k < 0 or a
drastically differs than expectation). Finally, the best results were
obtained when r was assumed as a known parameter, taken from
bi-selective inversion recovery experiment using the Eq. (1). Such
simplification did not significantly influence the results.Since both
NCH3 groups are located at the same nitrogen atom, the NOE
enhancement of non-perturbed NCH3 signal was expected during
selective inversion experiment.26 Such effect was noted in some
measurements (Fig. 3). However, the inclusion of the NOE in Eq.
(2) did not improve significantly the data fitting.For two-site system
with unequal populations the following equation was used
2. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford
University Press: Oxford, 2001. p. 1057.
3. Doyle, M. J. Org. Chem. 2006, 71, 9253–9260.
4. Hansen, J.; Davies, H. Coord. Chem. Rev. 2008, 254, 545–555. and references
cited therein.
5. Katsaros, N.; Anagnostopoulou, A. Crit. Rev. Oncol. Hematol. 2002, 42, 297–308.
6. Deubel, D. J. Am. Chem. Soc. 2008, 130, 665–675.
7. Burda, J.; Gu, J. J. Inorg. Biochem. 2008, 102, 53–62.
8. Kang, M.; Chitofides, H.; Dunbar, K. Biochemistry 2008, 47, 2265–2276.
9. Chitofides, H.; Dunbar, K. J. Am. Chem. Soc. 2007, 129, 12480–12490.
10. Aguirre, J.; Lutterman, D.; Angeles-Boza, A.; Dunbar, K.; Turro, C. Inorg. Chem.
2007, 46, 7494–7502. and references cited therein.
´
´
´
11. Frelek, J.; Górecki, M.; Jazwinski, J.; Masnyk, M.; Ruskowska, P.; Szmigielski, R.
Tetrahedron: Asymmetry 2005, 16, 3188–3197.
´
´
´
12. Frelek, J.; Jazwinski, J.; Masnyk, M.; Ruskowska, P.; Szmigielski, R. Tetrahedron:
Asymmetry 2005, 16, 2437–2448.
13. Frelek, J.; Klimek, A.; Rus´kowska, P. Curr. Org. Chem. 2003, 7, 1081–1104.
´
14. Frelek, J.; Jagodzinski, J.; Meyer-Figge, H.; Sheldrick, S.; Wieteska, E.; Szczepek,
J. Chirality 2001, 13, 313–321.
15. Frelek, J. Tetrahedron: Asymmetry 1999, 10, 2809–2816.
16. Frelek, J.; Szczepek, J. Tetrahedron: Asymmetry 1999, 10, 1507–1520.
17. Frelek, J. Pol. J. Chem. 1999, 73, 229–239.
18. Frelek, J.; Geiger, M.; Voelter, W. Curr. Org. Chem. 1999, 3, 117–146.
19. Duddeck, H. Chem. Rec. 2005, 5, 396–409. and references cited therein.
´
´
20. Jazwinski, J. J. Mol. Struct. 2005, 750, 7–17.
21. Jaz´win´ ski, J. Tetrahedron: Asymmetry 2006, 17, 2358–2365.
´
´
´
22. Jazwinski, J.; Kamienski, B. Solid State NMR 2007, 32, 25–33.
23. Bain, A.; Cramer, J. J. Phys. Chem. 1993, 97, 2884–2887.
24. Bain, A. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63–103.
25. Chesnut, D. Chem. Phys. Lett. 2003, 380, 251–257.
26. Neuhaus, D.; Williamson, M. The Nuclear Overhauser Effect in Structural and
Conformational Analysis; VCH: New York, 1989.
27. Liu, M.; Farrant, D.; Lindon, J. Magn. Reson. Chem. 1992, 30, 173–176.
28. Icke, R.; Wisegarver, B.; Alles, G.. In Org. Synth.; John Wiley and Sons: New York,
1955; Coll. Vol. III.
29. Pallavicini, M.; Valloti, E.; Villa, L.; Resta, I. Tetrahedron: Asymmetry 1994, 5,
363–370.
M1ðtÞ ¼ M1ð1Þ ꢀ A½M1ð1Þ ꢀ M1ð0Þꢅ ꢀ B½M2ð1Þ ꢀ M2ð0Þꢅ
where A ¼ ½kfeꢀðrþkf þkrÞt þ kreꢀrt ꢅ=½kf þ krꢅ, B ¼ ½krðꢀeꢀðrþkf þkrÞt þ eꢀrt Þꢅ=
½kf þ krꢅ, kf and kr state forward and reverse exchange rates, respec-
tively. By analogy to Eqs. (2) and (3), this equation converted to
(4) and (5) for selectively inverted and non-perturbed signals,
respectively:
30. Wypchlo, K.; Duddeck, H. Tetrahedron: Asymmetry 1994, 5,
31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.;Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. J. A. GAUSSIAN
03, Revision B.5, Pople Gaussian: Pittsburgh PA, 2003.
27–30.
M1ðtÞ=M1ð1Þ ¼ 1 ꢀ Að1 þ aÞ
M1ðtÞ=M1ð1Þ ¼ 1 ꢀ Bð1 þ aÞM2ð1Þ=M1ð1Þ
ð4Þ
ð5Þ
The equations contain four parameters to fit, r, kf, kr and a. How-
ever, an attempt to fit all parameters simultaneously resulted in a
large spread of kf and kr values, depending on the signal used for
the calculations. The best results were obtained assuming a and r
as known parameters (estimated from signal integrals and bi-selec-
tive T1 measurement) and fitting only kf and kr.The exchange rate k
(k1 + kꢀ1) estimations from 2D EXSY spectra were achieved using
ˇ
32. Kupce, E.; Boyd, J.; Campbell, I. J. Magn. Reson., Ser. B 1995, 106, 300–303.
33. Mathcad User’s Guide with Reference Manual, MathSoft, Cambridge, 2000, http://