The Journal of Physical Chemistry A
Article
(23) Yung, K. Y.; Schadock-Hewitt, A. J.; Hunter, N. P.; Bright, F. V.;
Baker, G. A. ‘Liquid Litmus’: Chemosensory pH-Responsive Photonic
Ionic Liquids. Chem. Commun. 2011, 47, 4775−4777.
(24) Zhao, F.; Ma, M. L.; Xu, B. Molecular Hydrogels of Therapeutic
REFERENCES
■
Agents. Chem. Soc. Rev. 2009, 38, 883−891.
(
1) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Kluwer
Academic: New York, 1999.
(25) Becke, A. D. Density-functional Thermochemistry. III. The Role
of Exact Exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(26) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti
(
2) Dobretsov, G. E. Fluorescent Probes for Studying Cells, Membranes
and Protein; Nauka, Moscow, 1989 (in Russian).
3) Iniewski, K. Smart Sensors for Industrial applications; CRC Press:
Boca Raton, FL, 2013.
4) Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke,
Correlation-Energy Formula into a Functional of the Electron Density.
Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785−789.
(
(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
(
R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent
Labels. Nat. Methods 2008, 5, 763−775.
(
5) Mihindukulasuriya, S. H.; Morcone, T. K.; McGown, L. B.
Characterization of Acridone Dyes for Use in Four-Decay Detection in
DNA Sequencing. Electrophoresis 2003, 24, 20−25.
(
6) Sun, Y.; Wei, S.; Zhao, Y.; Hu, X.; Fan, J. Interactions between 4-
(
2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide and Serum
Albumins: Investigation by Spectroscopic Approach. J. Lumin. 2012,
32, 879−886.
7) Kar, C.; Ojha, B.; Das, G. A. Novel Amphiphilic Thiosemicarba-
1
(
zone Derivative for Binding and Selective Sensing of Human Serum
Albumin. J. Lumin. 2013, 28, 339−344.
(
8) Rogers, R. D.; Seddon, K. R. Ionic Liquids - Solvents of the
Future? Science 2003, 302, 792−793.
9) Anderson, J. L.; Armstrong, D. W.; Wei, G. T. Ionic Liquids in
Analytical Chemistry. Anal. Chem. 2006, 78, 2892−2902.
10) Crank, J. A.; Armstrong, D. W. Towards a Second Generation of
(
28) Schlegel, H. B. Optimization of Equilibrium Geometries and
Transition Structures. J. Comput. Chem. 1982, 3, 214−218.
29) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys.
Rev. B 1964, 136, 864−871.
30) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and
Molecules; Oxford University Press: New York, 1989.
31) Barone, V.; Cossi, M. Quantum Calculation of Molecular
(
(
(
Ionic Liquid Matrices (ILMs) for MALDI-MS of Peptides, Proteins,
(
and Carbohydrates. J. Am. Soc. Mass Spectrom. 2009, 20, 1790−1800.
(
11) Plechkova, N. V.; Seddon, K. R. Applications of Ionic Liquids in
(
the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123−150.
12) Welton, T. Room-Temperature Ionic Liquids. Solvents for
Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071−2083.
13) Giernoth, R. Task-Specific Ionic Liquids. Angew. Chem., Int. Ed.
010, 49, 2834−2839.
14) Davis, J. H., Jr. Task-Specific Ionic Liquids. Chem. Lett. 2004, 33,
072−1077.
15) Lee, S. Functionalized Imidazolium Salts for Task-Specific Ionic
Liquids and Their Applications. Chem. Commun. 2006, 1049−1063.
16) Katayanagi, H.; Hayashi, S.; Hamaguchi, H.; Nishikawa, K.
Energies and Energy Gradients in Solution by a Conductor Solvent
(
Model. J. Phys. Chem. A 1998, 102, 1995−2001.
(32) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies,
(
2
(
1
Structures, and Electronic Properties of Molecules in Solution with the
C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669−681.
(
33) Miertus, S.; Tomasi, J. Approximate Evaluations of the
Electrostatic Free Energy and Internal Energy Changes in Solution
(
Processes. Chem. Phys. 1982, 65, 239−245.
(34) Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a
(
Solute with a Continuum. A Direct Utilization of ab initio Molecular
Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55,
Structure of an Ionic Liquid, 1-n-butyl-3-methylimidazolium iodide,
Studied by Wide-angle X-ray Scattering and Raman Spectroscopy.
Chem. Phys. Lett. 2004, 392, 460−464.
1
(
17−129.
35) Tway, P. C.; Love, L. J. C. Photophysical Properties of
(
17) Mele, A.; Tran, C. D.; De Paoli Lacerda, S. H. The Structure of a
Benzimidazole and Thiabendazole and Their Homologs. Effect of
Substituents and Solvent on the Nature of the Transition. J. Phys.
Chem. 1982, 86, 5223−5226.
Room-Temperature Ionic Liquid with and without Trace Amounts of
Water: The Role of C_H···O and C_H···F Interactions in 1-n-butyl-3-
methylimidazolium tetrafluoroborate. Angew. Chem., Int. Ed. 2003, 42,
(36) Varma Y, T.; Joshi, S.; Pant, D. D. Solvatochromatic Shift of
4
(
364−4366.
Absorption and Fluorescence Spectra of 6-methoxyquinoline:
Estimation of Ground and Excited State Dipole Moments. J. Mol.
Liq. 2013, 179, 7−11.
18) Shu, Y.; Liu, M.; Chen, S.; Chen, X.; Wang, J. New Insight into
Molecular Interactions of Imidazolium Ionic Liquids with Bovine
Serum Albumin. J. Phys. Chem. B 2011, 115, 12306−12314.
(37) Joshi, S.; Bhattacharjee, R.; Varma Y, T.; Pant, D. D. Estimation
(
19) Chen, X. W.; Liu, J. W.; Wang, J. H. A Highly Fluorescent
of Ground and Excited State Dipole Moments of Quinidine and
Quinidine Dication: Experimental and Numerical Methods. J. Mol. Liq.
Hydrophilic Ionic Liquid as a Potential Probe for the Sensing of
Biomacromolecules. J. Phys. Chem. B 2011, 115, 1524−1530.
2
(
013, 179, 88−93.
(
20) Liu, H.; Zhang, L.; Chen, J.; Zhai, Y.; Zeng, Y.; Li, L. A Novel
38) Sharma, R.; Joshi, S.; Bhattacharjee, R.; Pant, D. D. Solvent
Functional Imidazole Fluorescent Ionic Liquid: Simple and Efficient
Fluorescent Probes for Superoxide Anion Radical. Anal. Bioanal. Chem.
Effect on Absorption and Fluorescence Spectra of Cinchonine and
Cinchonidine Dications: Estimation of Ground and Excited State
Dipole Moments by Experimental and Numerical Studies. J. Mol. Liq.
2015, 206, 159−164.
(39) Reis, H.; Makowska-Janusik, M.; Papadopoulos, M. G.
Nonlinear Optical Susceptibilities of Poled Guest-Host Systems: A
Computational Approach. J. Phys. Chem. B 2004, 108, 8931−8940.
(40) Das, P.; Mallick, A.; Haldar, B.; Chakrabarty, A.; Chattopadhyay,
N. Effect of Nanocavity Confinement on the Rotational Relaxation
Dynamics: 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine
in Micelles. J. Chem. Phys. 2006, 125, 044516.
2
(
013, 405, 9563−9570.
21) Galpothdeniya, W. I. S.; Das, S.; De Rooy, S. L.; Regmi, B. P.;
Hamdan, S.; Warner, I. M. Fluorescein- based Ionic Liquid Sensor for
Label-Free Detection of Serum Albumins. RSC Adv. 2014, 4, 17533−
1
7540.
(
22) Galpothdeniya, W. I. S.; McCarter, K. S.; De Rooy, S. L.; Regmi,
B. P.; Das, S.; Hasan, F.; Tagge, A.; Warner, I. M. Ionic Liquid-based
Optoelectronic Sensor Arrays for Chemical Detection. RSC Adv. 2014,
4, 7225−7234.
K
J. Phys. Chem. A XXXX, XXX, XXX−XXX