Green Chemistry
Communication
(
Scheme 2). Clearly, the hydrogen source in 8 is not sufficient
6 C. Li, X. Zhao, A. Wang, G. W. Huber and T. Zhang, Chem.
Rev., 2015, 115, 11559–11624.
7 C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon and
M. Poliakoff, Science, 2012, 337, 695–699.
to cleave itself completely into 13, 14, and 15. Thus, a substan-
tial amount of 12 was produced. Various lines of evidence
suggest that 1a remains mononuclear for this reaction
(see section 8.3 in the ESI for details†).
8 G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006,
1
06, 4044–4098.
Z. R. Zhang, J. L. Song and B. X. Han, Chem. Rev., 2017, 10,
834–6880.
9
6
Conclusions
1
0 H. Guo, D. M. Miles-Barrett, A. R. Neal, T. Zhang, C. Li and
In conclusion, simple and structurally modular Rh terpyridine
N. J. Westwood, Chem. Sci., 2018, 9, 702–711.
complexes are found to be effective catalysts for redox-neutral 11 J. A. Melero, J. Iglesias and A. Garcia, Energy Environ. Sci.,
cleavage of the C–O bonds of β-O-4 lignin model compounds 2012, 5, 7393–7420.
in water under mild conditions. The modularity of the catalyst 12 M. V. Galkin, C. Dahlstrand and J. S. M. Samec,
structure allows us to find a catalyst with optimal electronic ChemSusChem, 2015, 8, 2187–2192.
and hydrophobic properties for lignin cleavage, which requires 13 M. V. Galkin, S. Sawadjoon, V. Rohde, M. Dawange and
less base additives (1.5 equiv. vs. 4 equiv.) and behaves differ- J. S. M. Samec, ChemCatChem, 2014, 6, 179–184.
ently (on water vs. in water) compared with our previous binuc- 14 F. Gao, J. D. Webb, H. Sorek, D. E. Wemmer and
lear Rh catalytic system. The catalytic system could also be J. F. Hartwig, ACS Catal., 2016, 6, 7385–7392.
used for depolymerizing real lignin and raw poplar wood 15 S. H. Lim, K. Nahm, C. S. Ra, D. W. Cho, U. C. Yoon,
powder. The depolymerization of raw poplar wood powder pro-
J. A. Latham, D. Dunaway-Mariano and P. S. Mariano,
ceeds in a “lignin-first” manner giving high yields of lignin oil
J. Org. Chem., 2013, 78, 9431–9443.
products. The solid residue could be easily separated and enzy- 16 J. D. Nguyen, B. S. Matsuura and C. R. J. Stephenson, J. Am.
matically hydrolyzed to produce glucose and xylose.
Chem. Soc., 2014, 136, 1218–1221.
1
1
7 C. S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood,
Angew. Chem., Int. Ed., 2015, 54, 258–262.
8 A. Wu, B. O. Patrick, E. Chung and B. R. James, Dalton
Trans., 2012, 41, 11093–11106.
Conflicts of interest
There are no conflicts to declare.
19 N. Luo, M. Wang, H. Li, J. Zhang, T. Hou, H. Chen,
X. Zhang, J. Lu and F. Wang, ACS Catal., 2017, 7, 4571–
4580.
2
0 X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen
and Y. Wang, Nat. Catal., 2018, 1, 772–780.
Acknowledgements
The authors acknowledge Xiaozan Dai and Prof. Zongbao Kent 21 A. Rahimi, A. Ulbrich, J. J. Coon and S. S. Stahl, Nature,
Zhao for performing the enzymatic hydrolysis reaction. This 2014, 515, 249–252.
research was supported by the 2017 Royal Society International 22 W. Huo, W. Li, M. Zhang, W. Fan, H. M. Chang and
Collaboration Award (IC170044), the National Natural Science H. Jameel, Catal. Lett., 2014, 144, 1159–1163.
Foundation of China (21773145, 21473109, 21690080, 23 J. M. Nichols, L. M. Bishop, R. G. Bergman and
1690083, and 21878288), the Science and Technology J. A. Ellman, J. Am. Chem. Soc., 2010, 132, 12554–12555.
Program of Shaanxi Province (2016KJXX-26), Projects for the 24 Y. Liu, C. Li, W. Miao, W. Tang, D. Xue, C. Li, B. Zhang,
2
Academic Leaders and Academic Backbones, Shaanxi Normal
University (16QNGG008), the 111 project (B14041), and the
DNL cooperation fund CAS (DNL180302).
J. Xiao, A. Wang, T. Zhang and C. Wang, ACS Catal., 2019,
9, 4441–4447.
25 S. K. Hanson, R. Wu and L. A. P. Silks, Angew. Chem., Int.
Ed., 2012, 51, 3410–3413.
26 B. Sedai, C. Díaz-Urrutia, R. T. Baker, R. Wu, L. A. P. Silks
and S. K. Hanson, ACS Catal., 2011, 1, 794–804.
Notes and references
2
7 Z. P. Cai, J. X. Long, Y. W. Li, L. Ye, B. L. Yin, L. J. France,
J. C. Dong, L. R. Zheng, H. Y. He, S. J. Liu, S. C. E. Tsang
and X. H. Li, Chem, 2019, 5, 2365–2377.
1
2
3
T. Dai, C. Li, L. Li, Z. K. Zhao, B. Zhang, Y. Cong and
A. Wang, Angew. Chem., Int. Ed., 2018, 57, 1808–1812.
A. Maneffa, P. Priecel and J. A. Lopez-Sanchez, 28 S. Son and F. D. Toste, Angew. Chem., Int. Ed., 2010, 49,
ChemSusChem, 2016, 9, 2736–2748. 3791–3794.
A. E. Settle, L. Berstis, N. A. Rorrer, Y. Roman-Leshkóv, 29 J. Ji, H. Guo, C. Li, Z. Qi, B. Zhang, T. Dai, M. Jiang, C. Ren,
G. T. Beckham, R. M. Richards and D. R. Vardon, Green
Chem., 2017, 19, 3468–3492.
Y. Xu, D. Liu and X. Liu, Appl. Catal., A, 2018, 552, 168–183.
A. Wang and T. Zhang, ChemCatChem, 2018, 10, 415–421.
30 M. V. Galkin and J. S. M. Samec, ChemSusChem, 2014, 7,
2154–2158.
4
5
J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and 31 I. Klein, C. Marcum, H. Kenttamaa and M. M. Abu-Omar,
B. M. Weckhuysen, Chem. Rev., 2010, 110, 3552–3599. Green Chem., 2016, 18, 2399–2405.
This journal is © The Royal Society of Chemistry 2020
Green Chem., 2020, 22, 33–38 | 37