S. Nakanishi et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7050–7053
7053
2. (a) Kotzyba-Hibert, F.; Kapter, I.; Goeldner, M. Angew. Chem., Int. Ed. Engl. 1995,
34, 1296; (b) Fleming, S. A. Tetrahedron 1995, 51, 12479; (c) Doman, G.;
Prestwich, G. D. Trends Biotechnol. 2000, 18, 64; (d) Campbell, D. A.;
Szardenings, A. K. Curr. Opin. Chem. Biol. 2003, 7, 296; (e) Robinette, D.;
Neamati, N.; Tomer, K. B.; Borchers, C. H. Expert Rev. Proteomics 2006, 3, 399; (f)
Vodovozova, E. L. Biochemistry (Moscow) 2007, 72, 1; (g) Hashimoto, M.;
Hatanaka, Y. Eur. J. Org. Chem. 2008, 2513; (h) Leslie, B. J.; Hergenrother, P. J.
Chem. Soc. Rev. 2008, 37, 1347.
3. (a) Levitsky, K.; Ciolli, C. J.; Belshaw, P. J. Org. Lett. 2003, 5, 693; (b) Chen, G.;
Heim, A.; Riether, D.; Yee, D.; Milgrom, Y.; Gawinowicz, M. A.; Sames, D. J. Am.
Chem. Soc. 2003, 125, 8130; (c) Levitsky, K.; Boersma, M. D.; Ciolli, C. J.;
Belshaw, P. J. ChemBioChem 2005, 6, 890; (d) Krusemark, C. J.; Belshaw, P. J. Org.
Biomol. Chem. 2007, 5, 2201; (e) Tanaka, K.; Fujii, Y.; Fukase, K. ChemBioChem
2008, 9, 2392.
4. (a) Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Nat. Chem.
Biol. 2009, 5, 341; (b) Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.;
Hamachi, I. J. Am. Chem. Soc. 2008, 130, 245; (c) Wakabayashi, H.; Miyagawa,
M.; Koshi, Y.; Takaoka, Y.; Tsukiji, S.; Hamachi, I. Chem. Asian J. 2008, 3, 1134;
(d) Mayer, T.; Maier, M. E. Eur. J. Org. Chem. 2007, 4711; (e) Hosoya, T.;
Hiramatsu, T.; Ikemoto, T.; Nakanishi, M.; Aoyama, H.; Hosoya, A.; Iwata, T.;
Maruyama, K.; Endo, M.; Suzuki, M. Org. Biomol. Chem. 2004, 2, 637; (f) Kan, T.;
Kita, Y.; Tominari, Y.; Morohashi, Y.; Natsugari, H.; Tomita, T.; Iwatsubo, T.;
Fukuyama, T. Chem. Commun. 2003, 2244.
din prior to reaction with CDMT to give 2, the actual concentration
of 1 could be as low as that of avidin itself (20 M). Thus, the rate
l
of generation of 2 from 1 at the biotin binding site of avidin should
much decrease. In addition, this slow step is necessary to repeat at
least twice because the intended labeling of Asp108 takes place
only after the reaction of 2 with Lys111. Decomposition of the
ligand catalyst by the hydrolysis or N-demethylation of 2,13 or
the hydrolysis of the ester group of 116 during the slow labeling
reaction might be responsible for decreasing the labeling yields.
Thus, the too strong binding ability of biotin with avidin does not
allow replacement of 1 bound to avidin with free 2, and therefore,
would be paradoxically responsible for the suppression rather than
the promotion of the labeling reaction. After all, the labeling yield
increased with both the increasing concentration of CDMT
(3.2 mM, y. 63%) or a prolonged reaction time (24 h, y. 77%).
In summary, we revealed the details of the specific labeling of
avidin by MoAL. The labeling reaction occurred specifically at
Asp108 at a significant level even if the linker lengths of the ligand
catalysts differed. This may indicate that the linker length of the li-
gand catalyst does not need to be strictly designed. MoAL would be
useful not only in searching for target proteins but also in the con-
formational analysis of the proteins.
5. Kunishima, M.; Nakanishi, S.; Nishida, J.; Tanaka, H.; Morisaki, D.; Hioki, K.;
Nomoto, H. Chem. Commun. 2009, 5597.
6. (a) Kunishima, M.; Yoshimura, K.; Morigaki, H.; Kawamata, R.; Terao, K.; Tani, S.
J. Am. Chem. Soc. 2001, 123, 10760; (b) Kunishima, M.; Imada, H.; Kikuchi, K.;
Hioki, K.; Nishida, J.; Tani, S. Angew. Chem., Int. Ed. 2005, 44, 7254.
7. Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Proc. Natl. Acad. Sci. U.S.A.
1993, 90, 5076.
Acknowledgment
8. The labeling yield shown throughout the Letter represents that of a monomeric
subunit.
9. (a) Sinz, A. Angew. Chem., Int. Ed. 2007, 46, 660; (b) Lamos, S. M.; Krusemark, C.
J.; McGee, C. J.; Scalf, M.; Smith, L. M.; Belshaw, P. J. Angew. Chem., Int. Ed. 2006,
45, 4329.
This work was supported partially by Grant-in-Aid for Science
Research (No. 20390007) from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
10. Green, N. M. Biochem. J. 1963, 89, 585.
11. We ignored the rate of the intermolecular labeling reaction by free ligand
catalysts because it was remarkably slow under the low concentration
conditions we employed.
Supplementary data
12. Kunishima, M.; Hioki, K.; Wada, A.; Kobayashi, H.; Tani, S. Tetrahedron Lett.
2002, 43, 3323.
13. Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iwasaki, F.; Tani, S.
Tetrahedron 1999, 55, 13159.
14. (a) Publiese, L.; Coda, A.; Malcovati, M.; Bolognesi, M. J. Mol. Biol. 1993, 231,
698; (b) Gitlin, G.; Bayer, E. A.; Wilchek, M. Biochem. J. 1987, 242, 923.
15. Kunishima, M.; Moriya, T.; Morita, J.; Ikuta, T.; Hioki, K.; Tani, S. Angew. Chem.,
Int. Ed. 2006, 45, 1252.
16. It is reported that avidin catalyzes hydrolysis of biotin p-nitrophenyl ester at
the binding site, see: Huberman, T.; Eisenberg-Domovich, Y.; Gitlin, G.; Kulik,
T.; Bayer, E. A.; Wilchek, M.; Livnah, O. J. Biol. Chem. 2001, 276, 32031.
Supplementary data (general methods, experimental and ana-
lytical data for the synthesized compounds) associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
1. Jakoby, W. B.; Colowick, S. P.; Wilchek, M. Methods Enzymol. 1977, 46, 3.