LETTER
Stereoselective Synthesis of Tri- and Tetrasubsituted , -Unsaturated Esters
1515
(13) The -ketoester corresponding to 1 was prepared from i
(Figure 3) and methyl propionate [i)LDA, THF, -78 °C, 1 h,
then i, -78 °C, 1 h. ii)PCC, CH2Cl2, r.t., 1 d]. The -
ketoesters corresponding to the ethylated products depicted
in Figure 2 were prepared from ii (Figure3) + methyl
acetoacetate (NaH, BuLi, THF, 0 °C, 0.5 h, then ii, 0 °C, 1
h), iii (Figure 3) + methyl propionate [i) LDA, THF, -78 °C,
1 h, then iii, -78 °C, 2 h. ii) PCC, CH2Cl2, r.t., 1 d], and iii +
methyl acetate [i) LDA, THF, -78 °C, 1 h, then iii, -78 °C, 2
h. ii) PCC, CH2Cl2, r.t., 1 d]. The (Z)- and (E)-enol triflates
were prepared under the Gibbs conditions8b from the -
ketoesters. All the enol triflates used in these experiments
are stereochemically pure. The compound ii was prepared
from 1,3-propanediol by tritylation (TrCl, Et3N, CH2Cl2, r.t.,
12 h) followed by iodination (I2, Ph3P, imidazole, CH2Cl2,
r.t., 1.5 h). The compounds i and iii were prepared by the
reported procedures, see: (a) Jones, G. B.; Hynd, G.; Wright,
J. M.; Sharma, A. J. Org. Chem. 2000, 65, 263. (b) Ide, M.;
Nakata, M. Bull. Chem. Soc. Jpn. 1999, 72, 2491.
(14) Satisfactory analytical data (NMR and IR spectra, elemental
analyses and/or HRMS) were obtained for all new
compounds. The double-bond geometry was confirmed by
NMR nOe experiments.
(15) In contrast, when the coupling reaction and the preparation
of the copper reagent were conducted at -78 °C in the
absence of LiCl, the reduction product 3 was obtained as the
major product.
(16) The effectiveness of the alkylhalide addition to the reaction
mixture has already been described by Casey4c and Weiler.6a
See also: Corey, E. J.; Katzenellenbogen, J. A.; Gilman, N.
W.; Roman, S. A.; Erickson, B. W. J. Am. Chem. Soc. 1968,
90, 5618.
(17) It is well known that organozincates are less nucleophilic
than Grignard reagents. For example, see: (a) Uchiyama,
M.; Kameda, M.; Mishima, O.; Yokoyama, N.; Koike, M.;
Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1998, 120,
4934. (b) Uchiyama, M.; Kondo, Y.; Sakamoto, T. J. Synth.
Org. Chem. Jpn. 1999, 57, 1051.
(18) In the case of Et3ZnMgCl prepared from a 1:1 mixture of
Et2Zn and EtMgCl, the ratio of 2 (R = Et) to 3 was 6:1.
(19) Unfortunately, the phenyl and vinyl groups could not
effectively be incorporated under the optimized conditions.
(20) For 1,4-addition reactions and substitution reactions using
organozincates in the presence of the catalytic amounts of
copper, see: (a) Tückmantel, W.; Oshima, K.; Nozaki, H.
Chem. Ber. 1986, 119, 1581. (b) Tsunashima, K.; Ide, M.;
Kadoi, H.; Hirayama, A.; Nakata, M. Tetrahedron Lett.
2001, 42, 3607.
References and Notes
(1) Coates, R. M.; Sowerby, R. L. J. Am. Chem. Soc. 1971, 93,
1027.
(2) Posner, G. H.; Brunelle, D. J. J. Chem. Soc., Chem.
Commun. 1973, 907.
(3) Kobayashi, S.; Takei, H.; Mukaiyama, T. Chem. Lett. 1973,
1097.
(4) (a) Casey, C. P.; Marten, D. F.; Boggs, R. A. Tetrahedron
Lett. 1973, 2071. (b) Casey, C. P.; Marten, D. F. Synth.
Commun. 1973, 3, 321. (c) Casey, C. P.; Marten, D. F.
Tetrahedron Lett. 1974, 925.
(5) Piers, E.; Nagakura, I. J. Org. Chem. 1975, 40, 2694.
(6) (a) Sum, F.-W.; Weiler, L. Can. J. Chem. 1979, 57, 1431.
(b) Alderdice, M.; Sum, F.-W.; Weiler, L. Org. Synth. Coll.
Vol. VII 1990, 351.
(7) Alderdice, M.; Spino, C.; Weiler, L. Tetrahedron Lett. 1984,
25, 1643.
(8) (a) Gibbs, R. A.; Krishnan, U.; Dolence, J. M.; Poulter, C. D.
J. Org. Chem. 1995, 60, 7821. (b) Shao, Y.; Eummer, J. T.;
Gibbs, R. A. Org. Lett. 1999, 1, 627. (c) Zahn, T. J.; Eilers,
M.; Guo, Z.; Ksebati, M. B.; Simon, M.; Scholten, J. D.;
Smith, S. O.; Gibbs, R. A. J. Am. Chem. Soc. 2000, 122,
7153.
(9) Lipshutz, B. H.; Elworthy, T. R. J. Org. Chem. 1990, 55,
1695.
(10) (a) Mu, Y.-Q.; Gibbs, R. A.; Eubanks, L. M.; Poulter, C. D.
J. Org. Chem. 1996, 61, 8010. (b) Zahn, T. J.; Ksebati, M.
B.; Gibbs, R. A. Tetrahedron Lett. 1998, 39, 3991.
(c) Zahn, T. J.; Weinbaum, C.; Gibbs, R. A. Bioorg. Med.
Chem. Lett. 2000, 10, 1763.
(11) (a) Kimura, H.; Miyamoto, S.; Shinkai, H.; Kato, T. Chem.
Pharm. Bull. 1982, 30, 723. (b) Dieter, R. K.; Silks, I. I. III;
Fishpaugh, J. R.; Kastner, M. E. J. Am. Chem. Soc. 1985,
107, 4679. (c) Adams, J. L.; Chen, T.-M.; Metcalf, B. W. J.
Org. Chem. 1985, 50, 2730. (d) Ishihara, T.; Maekawa, T.;
Yamasaki, Y.; Ando, T. J. Org. Chem. 1987, 52, 300.
(e) Mori, K.; Fujiwhara, M. Liebigs Ann. Chem. 1989, 41.
(12) (a) Whitesides, G. M.; Stedronsky, E. R.; Casey, C. P.;
Filippo, J. S. Jr. J. Am. Chem. Soc. 1970, 92, 1426.
(b) Tamura, M.; Kochi, J. K. J. Organometal. Chem. 1972,
42, 205. (c) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J.
A.; Parker, D. J. Org. Chem. 1984, 49, 3928. (d) Bertz, S.
H.; Dabbagh, G.; Mujsce, A. M. J. Am. Chem. Soc. 1991,
113, 631. (e) Lipshutz, B. H.; Sengupta, S. Org. React. 1992,
41, 135. (f) Karlström, A. S. E.; Rönn, M.; Thorarensen, A.;
Bäckvall, J.-E. J. Org. Chem. 1998, 63, 2517.
Synlett 2001, No. 10, 1511–1515 ISSN 0936-5214 © Thieme Stuttgart · New York