11212
J. Am. Chem. Soc. 2000, 122, 11212-11218
Highly Enantioselective 1,2-Addition of Lithium Acetylide-Ephedrate
Complexes: Spectroscopic Evidence for Reaction Proceeding via a
2:2 Tetramer, and X-ray Characterization of Related Complexes
Feng Xu,* Robert A. Reamer,* Richard Tillyer, Jordan M. Cummins,
Edward J. J. Grabowski, Paul J. Reider, David B. Collum,† and John C. Huffman‡
Contribution from the Department of Process Research, Merck Research Laboratories, P.O. Box 2000,
Rahway, New Jersey 07065, Department of Chemistry, Cornell UniVersity, Ithaca, New York 14853, and
Department of Chemistry, Indiana UniVersity, Bloomington, Indiana 47405
ReceiVed June 23, 2000. ReVised Manuscript ReceiVed September 22, 2000
Abstract: The key step in the manufacturing process for the HIV reverse transcriptase inhibitor efavirenz
(Sustiva) involves addition of the 2:2 tetrameric complex 6 [formed from lithium cyclopropylacetylide (5) and
lithium (1R,2S)-N-pyrrolidinylnorephedrate (4)] to ketone 2, to give 3 in 95% yield and 98% enantioselectivity.
Studies of acetylide-alkoxide complexes in solution by NMR spectroscopy and in the solid state by X-ray
crystallography are described. Studies of the asymmetric addition reaction involving 2:2 tetramer 6 using low-
temperature NMR spectroscopy provide conclusive evidence for formation of 2:1:1 tetramer 9 containing the
product alkoxide 3. Observation of this reaction intermediate strongly supports the proposed reaction mechanism
involving the tetramer 6 in the stereo-determining step.
Introduction
Scheme 1. Highly Enantioselective 1,2-Addition Reaction
Recent efforts within the Merck Research Laboratories to
discover new compounds for the treatment of HIV infection
have resulted in indinavir (Crixivan), a protease inhibitor, as
well as efavirenz (1)1-3 (Sustiva),4 a nonnucleoside reverse
transcriptase inhibitor. Efavirenz has shown excellent potency
against a variety of HIV-1 mutants when used in combination
with Crixivan or with other reverse transcriptase inhibitors, and
was recently approved for use by the FDA. A practical
asymmetric synthesis5 of efavirenz has been implemented for
large scale manufacture.6 The key step in this process (Scheme
1) involves the 1,2-addition of lithium cyclopropylacetylide (5)
to trifluoromethyl ketoaniline 2 using stoichiometric amounts
of lithium (1R,2S)-N-pyrrolidinylnorephedrate (4) as chiral
mediator.7
† Cornell University.
‡ Indiana University.
(1) Young, S. D.; Britcher, S. F.; Tran, L. O.; Payne, L. S.; Lumma, W.
C.; Lyle, T. A.; Huff, J. R.; Anderson, P. S.; Olsen, D. B.; Carrol, S. S.;
Pettibone, D. J.; O’Brien, J. A.; Ball, R. G.; Balani, S. K.; Lin, J. H.; Chen,
I.-W.; Schleif, W. A.; Sardana, V. V.; Long, W. J.; Byrnes, V. W.; Emini,
E. A. Antimicrob. Agents Chemother. 1995, 39, 2602.
(2) Romero, D. L. Annu. Rep. Med. Chem. 1994, 29, 123. Tucker, T. J.;
Lyle, T. A.; Wiscount, C. M.; Britcher, S. F.; Young, S. D.; Sanders, W.
M.; Lumma, W. C.; Goldman, M. E.; O’Brien, J. A.; Ball, R. G.; Homnick,
C. F.; Schlief, W. A.; Emini, E. A.; Huff, J. R.; Anderson, P. S. J. Med.
Chem. 1994, 37, 2437. Quinn, T. C. Lancet 1996, 348, 99. De Clercq, E.
J. Med. Chem. 1995, 38, 2491.
Optimal enantioselectivity (98% ee) and full conversion (95%
isolated yield)6 are obtained using THF as solvent and require
(3) Mayers, D.; Riddler, S.; Bach, M.; Stein, D.; Havlir, M. D.; Kahn,
J.; Ruiz, N.; Labriola, D. F. Interscience Conference on Antimicrobial Agents
and Chemotherapy 37th Congress (ICAAC); Toronto, Ontario, Sept. 28-
Oct. 1, 1997. Mayers, D. Interscience Conference on Antimicrobial Agents
and Chemotherapy 36th Congress (ICAAC); New Orleans, LA, September
15-18, 1996. Ruiz, N.; Riddle, S.; Mayers, D.; Wagner, K.; Bach, M.;
Stein, D.; Kahn, J.; Labriola, D. RetroVirus and Opportunistic Infections
4th Annual Conference; Washington, D. C., January 22-26, 1997.
(4) Efavirenz is sold under the trademark STOCRIN in certain countries.
(5) Thompson, A. S.; Corley, E. G.; Huntington, M. F.; Grabowski, E.
J. J. Tetrahedron Lett. 1995, 36, 8937.
(6) Pierce, M. E.; Parsons, R. L., Jr.; Radesca, L. A.; Lo, Y. S.; Silverman,
S.; Moore, J. R.; Islam, Q.; Choudhury, A.; Fortunak, J. M. D.; Nguyen,
D.; Luo, C.; Morgan, S. J.; Davis, W. P.; Confalone P. N.; Chen, C.; Tillyer,
R. D.; Frey, L.; Tan, L.; Xu, F.; Zhao, D.; Thompson, A. S.; Corley, E. G.;
Grabowski, E. J. J.; Reamer, R.; Reider, P. J. J. Org. Chem. 1998, 63,
8536.
(7) For examples for asymmetric 1,2-addition of acetylide mediated by
chiral additives, see: Mukaiyama, T.; Suzuki, K.; Soai, K.; Sato, T. Chem.
Lett. 1979, 447. Mukaiyama, T.; Suzuki, K. Chem. Lett. 1980, 255. Niwa,
S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1990, 937. Ramos Tombo, G.
M.; Didier, E.; Loubinoux, B. Synlett 1990, 547. Corey, E. J.; Cimprich,
K. A. J. Am. Chem. Soc. 1994, 116, 3151. Ye, M.; Logaraj, S.; Jackman,
L. M.; Hillegass, K.; Hirsh, K.; Bollinger, A. M.; Grosz, A. L.; Mani, V.
Tetrahederon 1994, 50, 6109. Huffman, M. A.; Yasuda, N.; DeCamp, A.
E.; Grabowski, E. J. J. J. Org. Chem. 1995, 60, 1590. For 1,2-additions
mediated by chiral lithium alkoxides, see: Mukaiyama, T.; Soai, K.; Sato,
T.; Shimizu, H.; Suzuki, K. J. Am. Chem. Soc. 1979, 101, 1455. Alberts,
A. H.; Wynberg, H. J. Am. Chem. Soc. 1989, 111, 7265. Alberts, A. H.;
Wynberg, H. J. Chem. Soc., Chem. Commun. 1990, 453. Gallagher, D. J.;
Wu, S.; Nikolic, N. A.; Beak, P. J. Org. Chem. 1995, 60, 8148. Hashimoto,
K.; Kitaguchi, J.; Mizuno, Y.; Kobayashi, T.; Shirahama, H. Tetrahedron
Lett. 1996, 37, 2275.
10.1021/ja0022728 CCC: $19.00 © 2000 American Chemical Society
Published on Web 10/28/2000