ꢀ
4
] . The relative energies
Fig. 3 The potential energy profiles of the singlet and triplet decomposition pathways A of the 1 : 2 adduct [2BF
3
ꢁMnO
are the electronic energy with zero-point energy and thermal corrections at 298 K.
O –Mn–O angle decreases from 109.41 to 46.71 and the Mn–O
a/b
3 S. Romain, L. Vigara and A. Llobet, Acc. Chem. Res., 2009, 42,
1944–1953.
a
b
˚
bond lengths increase by B0.2 A whereas the distance between O
a
4
T. J. Meyer, M. H. V. Huynh and H. H. Thorp, Angew. Chem., Int.
Ed., 2007, 46, 5284–5304.
˚
and O contracts to form a peroxo O–O bond (1.412 A). For this
b
decomposition reaction involving intercrossing of PESs, the
3
5 V. L. Pecoraro and W.-Y. Hsieh, Inorg. Chem., 2008, 47, 1765.
6 E. M. Sproviero, J. A. Gason, J. P. McEvog, G. W. Brudvig and
V. S. Batisda, J. Am. Chem. Soc., 2008, 130, 3428.
ꢀ1
activation barrier height (E
barrierless relative to free reactants) or 31.1 kcal mol (relative
a
) of ATS is –3.0 kcal mol
ꢀ
1
(
7
Y. Gao, T. Akermark, J. Liu, L. Sun and B. Akermark, J. Am.
Chem. Soc., 2009, 131, 8726–8727.
1
z
z
ꢀ1
to AIM1) at the B3LYP/6-31+G(d) level. DG and DS (relative
1
to AIM1) are 33.3 kcal mol
ꢀ1
ꢀ1
K ,
and ꢀ7.6 cal mol
8 S. H. Kim, H. Park, M. S. Seo, M. Kubo, T. Ogura, J. Klajn,
D. T. Gryko, J. S. Valentine and W. Nam, J. Am. Chem. Soc.,
2010, 132, 14030–14032.
3
respectively. The ATS has an imaginary frequency of
ꢀ
1
71i cm , which corresponds to the scissoring motion of
4
9
J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz,
A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton and
T. J. Meyer, Acc. Chem. Res., 2009, 42, 1954–1965; J. A. Gilbert,
D. S. Eggleston, W. R. Murphy, D. A. Geselowitz, S. W. Gersten,
D. J. Hodgson and T. J. Meyer, J. Am. Chem. Soc., 1985, 107,
O –Mn–O . With the continued elongation of Mn–O bonds,
a/b
a
b
3
the peroxo intermediate AIM2 converts into the intermediate
3
ꢀ1
AIM3 with an energy lowering of 35.7 kcal mol . Finally, a
3
ground-state O molecule is dissociated from AIM3, with the
2
3
855–3864.
ꢀ
manganese product being [MnF (OBF
2
2
)
2
] , which was experi-
10 H.-W. Tseng, R. Zong, J. T. Muckerman and R. Thummel, Inorg.
Chem., 2008, 47, 11763–11773.
11 A. Sartorel, M. Carraro, F. Scorrano, R. De Zorzi, S. Geremia,
N. D. McDaniel, S. Bernhard and M. Bonchio, J. Am. Chem. Soc.,
mentally observed by ESI/MS. We have also studied the
–
decomposition channels of MnO
ꢀ
4
without BF
3
and a 1 : 1
adduct [BF
3
ꢁMnO
4
]
(ESIw). Our computational studies show
2
008, 130, 5006–5007; Y. V. Geletii, B. Botar, P. Kogerler,
that the energy barrier for O
ꢀ
2
evolution follows the order
ꢀ
D. A. Hillesheim, D. G. Musaev and C. L. Hill, Angew. Chem.,
Int. Ed., 2008, 47, 3896–3899; L.-P. Wang, Q. Wu and
T. V. Voorhis, Inorg. Chem., 2010, 49, 4543–4553.
ꢀ
[
MnO
4
]
c [MnO
4
ꢁBF
3
]
> [MnO
4
ꢁ2BF
3
–
] .
In summary, we have shown that MnO
4
reacts with excess BF
] which decomposes to give O via a novel
intramolecular OꢁꢁꢁO coupling mechanism. It is worth mentioning
3
1
´
2 C. Sens, I. Romero, M. Rodrıguez, A. Llobet, T. Parella and
J. Benet-Buchholz, J. Am. Chem. Soc., 2004, 126, 7798–7799.
ꢀ
to give [MnO
2
(OBF
3
)
2
2
13 S. Romain, F. Bozoglian, X. Sala and A. Llobet, J. Am. Chem.
Soc., 2009, 131, 2768–2769.
2
4
ꢀ
that the FeO
ion can be readily activated by Brønsted acids to
1
4 F. Bozoglian, S. Romain, M. Z. Ertem, T. K. Todorova, C. Sens,
J. Mola, M. Rodrıguez, I. Romero, J. Benet-Buchholz,
20
liberate O2. Our results should provide insights for the design of
water oxidation catalysts based on metal-oxo species, it also raises
`
X. Fontrodona, C. J. Cramer, L. Gagliardi and A. Llobet,
J. Am. Chem. Soc., 2009, 131, 15176–15187.
5 L. Duan, A. Fischer, Y. Xu and L. Sun, J. Am. Chem. Soc., 2009,
2
+
the possibility that the role of the Ca ion in photosystem II is to
activate the manganese oxo intermediate.
1
1
1
1
131, 10397–10399.
6 J. Nyhlen, L. Duan, B. Akermark, L. Sun and T. Privalov, Angew.
The work described in this communication was supported
by the Hong Kong University Grants Committee Area of
Excellence Scheme (AoE/P-03-08) and General Research
Fund (CityU 101408). We thank one of the reviewers for very
helpful comments.
˚
´
Chem., Int. Ed., 2010, 49, 1773–1777.
7 Y. Surendranath, M. W. Kanan and D. G. Nocera, J. Am. Chem.
Soc., 2010, 132, 16501–16509.
8 S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski,
L. J. W. Shimon, Y. Ben-David, M. A. Iron and D. Milstein,
Science, 2009, 324, 74–77.
1
9 W. W. Y. Lam, S. M. Yiu, J. M. N. Lee, S. K. Y. Yau,
H. K. Kwong, T. C. Lau, D. Liu and Z. Y. Lin, J. Am. Chem.
Soc., 2006, 128, 2851–2858.
Notes and references
1
2
R. Eisenberg and H. B. Gray, Inorg. Chem., 2008, 47, 1697–1699.
T. A. Betley, Q. Wu, T. V. Voorhis and D. G. Nocera, Inorg.
Chem., 2008, 47, 1849–1861.
20 J. Lee, D. A. Tryk, A. Fujshima and S. M. Park, Chem. Commun.,
2002, 486–487.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4159–4161 4161