Organometallics
Article
(3) Yeung, M. C. L.; Yam, V. W. W. Luminescent cation sensors:
from host-guest chemistry, supramolecular chemistry to reaction-based
mechanisms. Chem. Soc. Rev. 2015, 44, 4192−4202.
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, U.K.; fax: +44 1223 336033.
(4) (a) Deraedt, C.; Astruc, D. Supramolecular nanoreactors for
catalysis. Coord. Chem. Rev. 2016, 324, 106−122. (b) Meeuwissen, J.;
Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat.
Chem. 2010, 2, 615−621. (c) Neel, A. J.; Hilton, M. J.; Sigman, M. S.;
Toste, F. D. Exploiting non-covalent π interactions for catalyst design.
Nature 2017, 543, 637−646. (d) Raynal, M.; Ballester, P.; Vidal-
Ferran, A.; van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 1:
non-covalent interactions as a tool for building and modifying
homogeneous catalysts. Chem. Soc. Rev. 2014, 43, 1660−1733.
(5) (a) Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R.
Building on architectural principles for three-dimensional metal-
losupramolecular construction. Chem. Soc. Rev. 2013, 42, 1728−1754.
(b) Constable, E. C. Expanded ligands - An assembly principle for
supramolecular chemistry. Coord. Chem. Rev. 2008, 252, 842−855.
(c) Nitschke, J. R. Construction, substitution, and sorting of metallo-
organic structures via subcomponent self-assembly. Acc. Chem. Res.
2007, 40, 103−112. (d) Steel, P. J. Ligand design in multimetallic
architectures: Six lessons learned. Acc. Chem. Res. 2005, 38, 243−250.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge financial support from MINECO of
Spain (CTQ2014-51999-P) and Universitat Jaume I (UJI-
B2017-07, P11B2015-24 and P11B2014-02). The authors are
(e) Wurthner, F.; You, C.-C.; Saha-Moller, C. R. Metallosupramo-
̈
̈
́
́
grateful to the Serveis Centrals d’Instrumentacio Cientıfica
(SCIC) of Universitat Jaume I for providing spectroscopic and
X-ray facilities.
lecular squares: from structure to function. Chem. Soc. Rev. 2004, 33,
133−146.
(6) (a) Ballester, P.; Fujita, M.; Rebek, J., Jr. Molecular containers.
Chem. Soc. Rev. 2015, 44, 392−393. (b) Frischmann, P. D.;
MacLachlan, M. J. Metallocavitands: an emerging class of functional
multimetallic host molecules. Chem. Soc. Rev. 2013, 42, 871−890.
(7) (a) Poyatos, M.; Mata, J. A.; Peris, E. Complexes with poly(N-
heterocyclic carbene) ligands: structural features and catalytic
applications. Chem. Rev. 2009, 109, 3677−3707. (b) Mata, J. A.;
Poyatos, M.; Peris, E. Structural and catalytic properties of chelating
bis- and tris-N-heterocyclic carbenes. Coord. Chem. Rev. 2007, 251,
841−859.
DEDICATION
■
We dedicate this article to Professor Ernesto Carmona on the
occasion of his 70th birthday. Professor Carmona has been one
of the strongest contributors to the development of organo-
metallic chemistry in Spain, a good friend, and a reference for
many chemistry researchers.
REFERENCES
(8) Sinha, N.; Hahn, F. E. Metallosupramolecular Architectures
Obtained from PoIy-N-heterocyclic Carbene Ligands. Acc. Chem. Res.
2017, 50, 2167−2184.
(9) Winter, A.; Schubert, U. S. Synthesis and characterization of
metallo-supramolecular polymers. Chem. Soc. Rev. 2016, 45, 5311−
5357.
(10) Peris, E. Polyaromatic N-heterocyclic carbene ligands and π-
stacking. Catalytic consequences. Chem. Commun. 2016, 52, 5777−
5787.
(11) (a) Nuevo, D.; Gonell, S.; Poyatos, M.; Peris, E. Platinum-Based
Organometallic Folders for the Recognition of Electron-Deficient
Aromatic Substrates. Chem. - Eur. J. 2017, 23, 7272−7277.
(b) Martinez-Agramunt, V.; Ruiz-Botella, S.; Peris, E. Nickel-Cornered
Molecular Rectangles as Polycyclic Aromatic Hydrocarbon Receptors.
■
(1) (a) Dong, S.; Zheng, B.; Wang, F.; Huang, F. Supramolecular
Polymers Constructed from Macrocycle-Based Host-Guest Molecular
Recognition Motifs. Acc. Chem. Res. 2014, 47, 1982−1994. (b) Ariga,
K.; Ito, H.; Hill, J. P.; Tsukube, H. Molecular recognition: from
solution science to nano/materials technology. Chem. Soc. Rev. 2012,
41, 5800−5835. (c) Chen, B.; Xiang, S.; Qian, G. Metal-Organic
Frameworks with Functional Pores for Recognition of Small
Molecules. Acc. Chem. Res. 2010, 43, 1115−1124.
(2) (a) Schmidt, A.; Molano, V.; Hollering, M.; Poethig, A.; Casini,
A.; Kuehn, F. E. Evaluation of New Palladium Cages as Potential
Delivery Systems for the Anticancer Drug Cisplatin. Chem. - Eur. J.
2016, 22, 2253−2256. (b) Zheng, Y.-R.; Suntharalingam, K.;
Johnstone, T. C.; Lippard, S. J. Encapsulation of Pt(IV) prodrugs
within a Pt(II) cage for drug delivery. Chem. Sci. 2015, 6, 1189−1193.
(c) Therrien, B. Top. Curr. Chem. 2011, 319, 35−55. (d) Schmitt, F.;
Freudenreich, J.; Barry, N. P. E.; Juillerat-Jeanneret, L.; Suess-Fink, G.;
Therrien, B. Organometallic Cages as Vehicles for Intracellular Release
of Photosensitizers. J. Am. Chem. Soc. 2012, 134, 754−757. (e) Barry,
N. P. E.; Zava, O.; Dyson, P. J.; Therrien, B. Excellent Correlation
between Drug Release and Portal Size in Metalla-Cage Drug-Delivery
Systems. Chem. - Eur. J. 2011, 17, 9669−9677. (f) Zava, O.; Mattsson,
J.; Therrien, B.; Dyson, P. J. Evidence for Drug Release from a Metalla-
Cage Delivery Vector Following Cellular Internalisation. Chem. - Eur. J.
2010, 16, 1428−1431. (g) Therrien, B.; Suess-Fink, G.;
Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J. The “Complex-in-a-
C o m p l e x ” c a t i o n s ( a c a c ) 2 M s u b s e t o f R u 6 ( p -
iPrC6H4Me)6(tpt)2(dhbq)36+: A Trojan horse for cancer cells.
Angew. Chem., Int. Ed. 2008, 47, 3773−3776. (h) Cook, T. R.;
Vajpayee, V.; Lee, M. H.; Stang, P. J.; Chi, K.-W. Biomedical and
Biochemical Applications of Self-Assembled Metallacycles and Metal-
lacages. Acc. Chem. Res. 2013, 46, 2464−2474. (i) Feng, Z. Q. Q.;
Zhang, T. F.; Wang, H. M.; Xu, B. Supramolecular catalysis and
dynamic assemblies for medicine. Chem. Soc. Rev. 2017, 46, 6470−
6479.
Chem. - Eur. J. 2017, 23, 6675−6681. (c) Biz, C.; Ibanez, S.; Poyatos,
̃
M.; Gusev, D.; Peris, E. Gold(I) Metallo-Tweezers for the Recognition
of Functionalized Polycyclic Aromatic Hydrocarbons by Combined pi-
pi Stacking and H-Bonding. Chem. - Eur. J. 2017, 23, 14439−14444.
(d) Mejuto, C.; Escobar, L.; Guisado-Barrios, G.; Ballester, P.; Gusev,
D.; Peris, E. Self-Assembly of Di-N-Heterocyclic Carbene-Gold-
Adorned Corannulenes on C-60. Chem. - Eur. J. 2017, 23, 10644−
10651.
(12) Ibanez, S.; Poyatos, M.; Peris, E. Cation-Driven Self-Assembly of
̃
a Gold(I)-Based Metallo-Tweezer. Angew. Chem., Int. Ed. 2017, 56,
9786−9790.
(13) (a) Han, M.; Engelhard, D. M.; Clever, G. H. Self-assembled
coordination cages based on banana-shaped ligands. Chem. Soc. Rev.
2014, 43, 1848−1860. (b) Otte, M. Size-Selective Molecular Flasks.
ACS Catal. 2016, 6, 6491−6510. (c) Yoshizawa, M.; Klosterman, J. K.;
Fujita, M. Functional Molecular Flasks: New Properties and Reactions
within Discrete, Self-Assembled Hosts. Angew. Chem., Int. Ed. 2009, 48,
3418−3438. (d) Hahn, E. F.; Sun, L.-Y.; Sinha, N.; Yan, T.; Wang, Y.-
S.; Tan, T. T. Y.; Yu, L.; Han, Y.-F. Template Synthesis of Three-
Dimensional Hexakisimidazolium Cages. Angew. Chem., Int. Ed. 2018,
D
Organometallics XXXX, XXX, XXX−XXX