3
A Kinetic Study of the Conjugate Addition of
Benzenethiol to Cyclic Enones Catalyzed by a
Nonsymmetrical Uranyl-Salophen Complex
uranyl-salophen compounds as metalloreceptors and metal-
4
locatalysts.
Valeria van Axel Castelli, Antonella Dalla Cort,
Luigi Mandolini,* Valentina Pinto, and Luca Schiaffino
Dipartimento di Chimica and IMC-CNR,
UniVersit a` La Sapienza, 00185 Roma, Italy
ReceiVed February 28, 2007
Conjugate additions of thiols to activated olefins are biologi-
5
6
cally relevant and synthetically useful reactions. We reported
that uranyl-salophen compounds 1 and 2 catalyze with high
turnover efficiency the tertiary amine assisted addition of
benzenethiol to cyclic and acyclic enones and provided a detailed
4
a-c
description of the complex kinetics.
The almost parallel pendants in 2 form a narrow cleft easily
accessible by sterically unhindered, planar donor guests.7
Attractive van der Waals interactions of the guest with the cleft
3
b
walls enhance complex formation. Association constants
The Et
3
N-assisted addition of benzenethiol to enones in
(Table 1) with a number of enones (4a-8a) and their phenylthio
chloroform is catalyzed with high turnover efficiency by the
phenyl-substituted uranyl-salophen compound 3. Catalytic
data show a close adherence to a quatermolecular mechanism
involving reaction of a base-activated thiol with a reversibly
formed complex of enone and metal catalyst, with a
complication of product inhibition due to the formation of a
product-catalyst complex. The role of the binding energy
made available by interactions with the aromatic sidearm of
the catalyst is discussed in terms of catalyst-substrate and
catalyst-transition state complementarity.
(
3) (a) Antonisse, M. M. G.; Reinhoudt, D. N. Chem. Commun. 1998,
4
43-448. (b) van Axel Castelli, V.; Dalla Cort, A.; Mandolini, L.; Pinto,
V.; Reinhoudt, D. N.; Ribaudo, F.: Sanna, C.; Schiaffino, L.; Snellink-
Ru e¨ l, B. H. M. Supramol. Chem. 2002, 14, 211-219. (c) Dalla Cort, A.;
Miranda Murua, J. I.; Pasquini, C.; Pons, M.; Schiaffino, L. Chem.sEur.
J. 2004, 10, 3301-3307. (d) Cametti, M.; Nissinen, M.; Dalla Cort, A.;
Mandolini, L.; Rissanen, K. J. Am. Chem. Soc. 2005, 127, 3831-3837. (e)
Cametti, M.; Nissinen, M.; Dalla Cort, A.; Mandolini, L.; Rissanen, K. J.
Am. Chem. Soc. 2007, 129, 3641-3648.
(4) (a) van Axel Castelli, V.; Dalla Cort, A.; Mandolini, L.; Reinhoudt,
D. N. J. Am. Chem. Soc. 1998, 120, 12688-12689. (b) van Axel Castelli,
V.; Dalla Cort, A.; Mandolini, L.; Reinhoudt, D. N.; Schiaffino, L. Chem.s
Eur. J. 2000, 6, 1193-1198. (c) van Axel Castelli, V.; Dalla Cort, A.;
Mandolini, L.; Reinhoudt, D. N.; Schiaffino, L. Eur. J. Org. Chem. 2003,
6
27-633. (d) Dalla Cort, A.; Mandolini, L.; Schiaffino, L. Chem. Commun.
2005, 3867-3869.
5) (a) Fluharty, A. L. In The Chemistry of the Thiol Group, Part 2;
Salophen ligands (salophen ) N,N′-phenylene salicylidene)
are widely studied in coordination chemistry and have found
application in supramolecular chemistry owing to the easy
(
Patai, S., Ed.; Wiley: New York, 1974; p 589. (b) Jocelyn, P. C. In
Biochemistry of the SH Group; Academic Press: London, 1972; p 98.
For recent examples, see: (c) Lutolf, M.P.; Tirelli, N.; Cerritelli, S.;
Colussi, L.; Hubbell, J. Bioconjugate Chem. 2001, 12, 1051-1056. (d)
Schmidt, T. J.; Ak, M.; Mrowietz, U. Bioorg. Med. Chem. 2007, 15, 333-
1
synthetic accessibility of a large variety of different structures.
2
+
In their robust complexes with the uranyl dication UO2
,
the N2O2 donor atoms occupy four of the five coordination sites
of the uranium, while leaving the fifth position available
for labile coordination of a monodentate ligand. Such
342.
(6) For selected examples, see: (a) Adam, W.; Nava-Salgado, V. O. J.
2
Org. Chem. 1995, 60, 578-584. (b) Michael, K.; Kessler, H. Tetrahedron
Lett. 1996, 37, 3453-3456. (c) Sreekumar, R.; Rugmini, P.; Padma Kumar,
R. Tetrahedron Lett. 1997, 38, 6557-6560. (d) Rohrig, S.; Hennig, L.;
Findesein, M.; Welzel, P.; Frischmuth, K.; Marx, A.; Petronisch, T.; Koll,
P.; M u¨ ller, D.; Mayer-Figge, H.; Sheldrich, W. S. Tetrahedron 1998, 54,
3413-3438. (e) Cheng, S.; Comer, D. D. Tetrahedron Lett. 2002, 43, 1179-
1181. (f) Heggli, M.; Tirelli, N.; Zisch, A.; Hubbell, J. A. Bioconjugate
Chem. 2003, 14, 967-973. (g) McDaid, P.; Chen, Y.; Deng, L. Angew.
Chem., Int. Ed. 2002, 41, 338-340.
Lewis acid-base interaction provides the basis for the use of
*
To whom correspondence should be addressed. Tel: +39 0649913624.
Fax: +39 06490421.
(
1) Vigato, P. A.; Tamburini, S. Coord. Chem. ReV. 2004, 248, 1717-
2
128.
(
2) (a) Sessler, J. L.; Melfi, P. J.; Pantos, G. D. Coord. Chem. ReV.
2
2
006, 250, 816-843. (b) Ephritikhine, M. Dalton Trans. 2006, 2501-
516.
(7) Van Doorn, A. R.; Bos, M.; Harkema, S.; Van Eerden, J.; Verboom,
W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 2371-2380.
1
0.1021/jo070357m CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/09/2007
J. Org. Chem. 2007, 72, 5383-5386
5383