3268
A. Deshmukh et al. / Polyhedron 29 (2010) 3262–3268
Table 5
Effect of different substrates on the catalytic activity.a
O
OH
H2, Water, Catalyst
R1
R2
R1
R2
>C@O selectivity (%)
b
Catalysts
Substrate
Conversion (%)
TOF (hꢁ1
)
Ru–Phen-2
Ru–Phen-2-NH-MCM-41
Ru–Phen-2
Ru–Phen-2-NH-MCM-41
Ru–Phen-2
Ru–Phen-2-NH-MCM-41
Ru–Phen-2
R1 = C2H5, R2 = CH3
99
99
100
98
99
99
100
97
95
99
98
>99
96
98
94
97
246
212
241
201
257
247
363
339
R1 = C5H11, R2 = CH3
R1 = Ph, R2 = CH3
Cyclohex-2-ene-one
Ru–Phen-2-NH-MCM-41
a
Reaction conditions: substrate = 1 g, substrate: base = 10 (wt/wt), neat catalyst = 0.005 g (Ru–Phen-2), solid catalyst = 0.1 g (Ru–Phen-2-NH-MCM-41), tempera-
ture = 100 °C, pressure = 2.04 MPa, agitation speed = 300 rpm, and water = 30 mL.
b
TOF = turn over frequency = mole of product formed/mole of Ru per hour.
crease in selectivity using the recycled catalyst. The fresh reaction
was performed using the mother liquor and it was observed that
the conversion was around 9%. This takes the process towards a
green chemistry route in which a non-environmental pollutant sol-
vent and an easily separable and recyclable catalyst are used.
References
[1] Ullmann’s Encyclopedia of Technical Chemistry, sixth ed., Wiley-VCH, 2000.
[2] V. Ponec, Appl. Catal. A: Gen. 149 (1997) 27.
[3] P. Claus, Appl. Catal. A: Gen. 291 (2005) 222.
[4] M.G. Musolino, P. de Maio, A. Donato, R. Pietropaolo, J. Mol. Catal. A: Chem. 208
(2004) 219.
[5] (a) E. Linder, A. Ghanem, I. Warad, K. Eichele, H.A. Mayer, V. Schurig,
Tetrahedron Asymmetry 14 (2003) 1045;
(b) E. Lindner, I. Warad, K. Eichele, H.A. Mayer, Inorg. Chim. Acta 350 (2003)
49.
[6] P. Peach, D.J. Cross, J.A. Kenny, I. Mann, I. Houson, L. Campbell, T. Walsgrove, M.
Wills, Tetrahedron 62 (2006) 1864.
[7] J.X. Chen, J.F. Daeuble, D.M. Brestensky, J.M. Stryker, Tetrahedron 56 (2000)
2153.
[8] M. De bruyn, S. Coman, R.R. Bota, V.I. Parvulescu, D.E. De Vos, P.A. Jacobs,
Angew. Chem., Int. Ed. 42 (2003) 5333.
[9] M. De bruyn, M. Limbourg, J. Denayer, G.V. Baron, V. Parvulescu, P.J. Grobet,
D.E. De Vos, P.A. Jacobs, Appl. Catal. A: Gen. 254 (2003) 189.
[10] C. Milone, R. Ingoglia, M.L. Tropeano, G. Neri, S. Galvagno, Chem. Commun.
(2003) 868.
[11] C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno, J. Catal.
236 (2005) 80.
3.2.8. Effect of substrate
Table 5 shows the hydrogenation of unsaturated ketones with
the substitution of C@C by pentane or phenyl. The increase in the
turn over frequency (TOF) value in the case of the phenyl substi-
tuted compound is attributed to the lower steric hindrance as com-
pared to that of pentane, as the phenyl ring always remains in one
plane. However, in both the cases the selectivity remains unaf-
fected. This indicates that only the functional group (C@O) is re-
duced over the catalyst and the double bond remains protected,
giving very high selectivity towards the unsaturated alcohol. An in-
crease in selectivity and decrease in TOF was observed in the case
of the heterogenized metal complex due to the diffusion barrier as
compared to the homogeneous catalytic system.
[12] P.G.N. Mertens, P. Vandezande, X. Ye, H. Poelman, I.F.J. Vankelecom, D.E. De
Vos, Appl. Catal. A: Gen. 355 (2009) 176.
[13] G. Szollosi, M. Bartok, J. Mol. Catal. A: Chem. 148 (1999) 265.
[14] G. Fogassy, A. Tungler, A. Levai, J. Mol. Catal. A: Chem. 192 (2003) 189.
[15] T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 117
(1995) 2675.
[16] E.A. Seddon, K.R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam,
1984.
[17] S.C. Laha, P. Mukherjee, S.R. Sainkar, R. Kumar, J. Catal. 207 (2002) 213.
[18] (a) R.A. Krause, Inorg. Chim. Acta 22 (1977) 209;
(b) S. Sen, S. Mitra, P. Kundu, M.K. Saha, C. Kruger, J. Bruckmann, Polyhedron
16 (1977) 2475.
[19] M. Eswaramoorthy, Chem. Commun. (1998) 615.
[20] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992)
710.
[21] C.Y. Chen, H.X. Li, M.E. Davis, Microporous Mater. 2 (1993) 17.
[22] J. Xu, Z. Luan, H. He, W. Zhou, L. Kevan, Chem. Mater. 10 (1998) 3690.
[23] (a) M.R. Almeida, C.G. Pantano, J. Appl. Phys. 68 (1990) 4225;
(b) E.I. Kamitsos, A.P. Patsis, G. Kordas, Phys. Rev. B. 48 (1993) 12499.
[24] R.J. Staniewicz, R.F. Sympson, D.G. Hendricker, Inorg. Chem. 16 (1977) 2166.
[25] S. Zakeeruddin, Md.K. Nazeeruddin, R. Humphry-Baker, M. Grätzel, Inorg.
Chim. Acta 296 (1999) 250.
[26] J.W. Robinson (Ed.), Practical Handbook of Spectroscopy, CRC Press, Florida,
1991. p. 183.
[27] S. Rau, B. Schäfer, A. Grüßing, S. Schebesta, K. Lamm, J. Vieth, H. Görls, D.
Walther, M. Rudolph, U.W. Grummt, E. Birkner, Inorg. Chim. Acta 357 (2004)
4496.
4. Conclusion
The synthesis and catalytic activity of Ru(phen)2 immobilized
on MCM-41 has been successfully investigated. The rate of reaction
under homogeneous conditions is higher as compare to heteroge-
neous conditions, and the selectivity is lower. The heterogenization
of a homogeneous catalyst gives a higher selectivity for the product
compared to the reaction under homogeneous conditions for the
same conversion, as the rate of reaction is lower in the case of
the heterogeneous catalyst. The heterogeneous catalyst can be
recycled and reused. Bidentated ligands show higher activity and
selectivity for the product in the hydrogenation of 3-methylpent-
3-en-2-one to 3-methylpent-3-en-2-ol because these reduce the
accessibility of reactant molecules towards the metal center,
resulting in a lower rate of reaction. The most important aspect
of this publication is the utilization of water as a reaction medium,
which makes this process green.
Acknowledgement
ˇ
ˇ
[28] P. Štepnicka, J. Ludvík, J. Canivet, G. Süss-Fink, Inorg. Chim. Acta 359 (2006)
2369.
[29] (a) T.E. Crozier, S. Yamamoto, J. Chem. Eng. Data 19 (1974) 242;
(b) T. Katayama, T. Nitta, J. Chem. Eng. Data 21 (1976) 194.
Amit Deshmukh acknowledges the Council of Scientific and
Industrial research (CSIR), Govt. of India for research funding.