Paper
Organic & Biomolecular Chemistry
entropic effects associated with the use of an ionic liquid,
resulting in a substantial, enthalpically driven, rate increase.
Overall, changes in the extent of solvation of species along the
reaction coordinate by the ionic liquid can have marked effects
on the overall activation energy, due to subtle differences in
8 S. T. Keaveney, R. S. Haines and J. B. Harper, in Encyclo-
pedia of Physical Organic Chemistry, ed. U. Wille, Wiley,
in press.
9 J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508–
3576.
the enthalpic and entropic changes induced by an ionic liquid 10 K. R. Seddon, Kinet. Catal. Engl. Transl., 1996, 37, 693–
solvent. This work clearly highlights that the magnitude of the 697.
different interactions along the reaction coordinate need to be 11 C. L. Hussey, Pure Appl. Chem., 1988, 60, 1763–1772.
carefully considered; this is particularly important when trying 12 M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea,
to make predictions about how an ionic liquid might effect the
rate constant of other reaction types.
J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee,
K. R. Seddon and J. A. Widegren, Nature, 2006, 439, 831–
834.
A final interesting outcome from this work was the differ-
ences in how the unimolecular and bimolecular mechanisms 13 B. Wu, W. Liu, Y. Zhang and H. Wang, Chem. – Eur. J.,
were affected by changing the amount of ionic liquid 1 in the 2009, 15, 1804–1810.
reaction mixture. For this case the unimolecular pathway was 14 S. T. Keaveney, J. B. Harper and A. K. Croft, RSC Adv., 2015,
favoured at lower mole fractions of the salt 1, and the bimole- 5, 35709–35729.
cular case favoured at higher mole fractions. This demon- 15 C. D. Hubbard, P. Illner and R. van Eldik, Chem. Soc. Rev.,
strates the potential to use ionic liquids to control which 2011, 40, 272–290.
pathway a reaction proceeds through, which could have impli- 16 C. Chiappe and C. S. Pomelli, Phys. Chem. Chem. Phys.,
cations in areas such as asymmetric synthesis and for reac- 2013, 15, 412–423.
tions where there are competing pathways, resulting in 17 S. Zahn, M. Brehm, M. Brüssel, O. Hollóczki, M. Kohagen,
unwanted by-products. This is a potentially useful concept,
and we hope this current work stimulates further research into
the possible applications of ionic liquids in such areas.
S. Lehmann, F. Malberg, A. S. Pensado, M. Schöppke,
H. Weber and B. Kirchner, J. Mol. Liq., 2014, 192, 71–76.
18 B. Kirchner, O. Hollóczki, J. N. Canongia Lopes and
A. A. H. Pádua, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2015, 5, 202–214.
19 N. L. Lancaster, T. Welton and G. B. Young, J. Chem. Soc.,
Perkin Trans. 2, 2001, 2267–2270.
20 N. L. Lancaster, P. A. Salter, T. Welton and G. B. Young,
J. Org. Chem., 2002, 67, 8855–8861.
21 N. L. Lancaster and T. Welton, J. Org. Chem., 2004, 69,
5986–5992.
22 L. Crowhurst, R. Falcone, N. L. Lancaster, V. Llopis-Mestre
and T. Welton, J. Org. Chem., 2006, 71, 8847–8853.
23 G. Ranieri, J. P. Hallett and T. Welton, Ind. Eng. Chem. Res.,
2008, 47, 638–644.
Acknowledgements
STK acknowledges the support of the Australian government
through the receipt of an Australian Postgraduate Award. JBH
acknowledges financial support from the Australian Research
Council Discovery Project Funding Scheme (Project
DP130102331). The authors would like to acknowledge the
NMR Facility within the Mark Wainwright Analytical Centre at
the University of New South Wales for NMR support.
24 H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft and
J. B. Harper, Org. Biomol. Chem., 2009, 7, 3572–3575.
25 H. M. Yau, A. K. Croft and J. B. Harper, Faraday Discuss.,
2012, 154, 365–371.
26 E. E. L. Tanner, H. M. Yau, R. R. Hawker, A. K. Croft and
J. B. Harper, Org. Biomol. Chem., 2013, 11, 6170–6175.
27 S. T. Keaveney, D. V. Francis, W. Cao, R. S. Haines and
J. B. Harper, Aust. J. Chem., 2015, 68, 31–35.
Notes and references
1 S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao and J. Wang,
Chem. Soc. Rev., 2014, 43, 7838–7869.
2 M. C. Buzzeo, R. G. Evans and R. G. Compton, Chem-
PhysChem, 2004, 5, 1106–1120.
28 A. Skrzypczak and P. Neta, Int. J. Chem. Kinet., 2004, 36,
253–258.
3 D. R. MacFarlane, M. Forsyth, P. C. Howlett, J. M. Pringle,
J. Sun, G. Annat, W. Neil and E. I. Izgorodina, Acc. Chem. 29 R. Bini, C. Chiappe, C. S. Pomelli and B. Parisi, J. Org.
Res., 2007, 40, 1165–1173. Chem., 2009, 74, 8522–8530.
4 M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and 30 S. T. Keaveney, K. S. Schaffarczyk McHale, R. S. Haines and
B. Scrosati, Nat. Mater., 2009, 8, 621–629. J. B. Harper, Org. Biomol. Chem., 2014, 12, 7092–7099.
5 H. Olivier-Bourbigou, L. Magna and D. Morvan, Appl. 31 S. T. Keaveney, R. S. Haines and J. B. Harper, Org. Biomol.
Catal., A, 2010, 373, 1–56. Chem., 2015, 13, 3771–3780.
6 A. Brandt, J. Grasvik, J. P. Hallett and T. Welton, Green 32 J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic
Chem., 2013, 15, 550–583. Chemistry, 1st edn, Oxford University Press, 2001.
7 G. Cevasco and C. Chiappe, Green Chem., 2014, 16, 2375– 33 N. S. Isaacs, Physical Organic Chemistry, Addison Wesley
2385.
Longman Limited, Harlow, 1998.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2016