G. Sundararajan et al. / Tetrahedron Letters 45 (2004) 8253–8256
8255
3. Deyrup, J. A.; Moyer, C. L. J. Org. Chem. 1969, 34, 175–
179.
4. (a) Chini, M.; Crotti, P.; Macchia, F. J. Org. Chem. 1991,
56, 5939–5942; (b) Chini, M.; Crotti, P.; Macchia, F.
Tetrahedron Lett. 1990, 31, 4464–4661.
CoCl2
Oδ
O
NHAr
CoCl2
δ
Ar
Ar
Ar
OH
B
ArNH2
5. (a) Kissel, C. L.; Rickborn, B. J. Org. Chem. 1972, 37,
2060–2063; (b) Carre, M. C.; Houmounou, J. P.; Caubere,
P. Tetrahedron Lett. 1985, 26, 3107–3110; (c) Yamada, J.;
Yumoto, M.; Yamamoto, Y. Tetrahedron Lett. 1989, 32,
4255–4258; (d) Fiorenza, M.; Ricci, A.; Taddel, M.; Tassi,
D. Synthesis 1983, 640–641; (e) Yamamoto, Y.; Asao, N.;
Meguro, M.; Tsukada, N.; Nemoto, H.; Sadayori, N.;
Wilson, J. G.; Nakamura, H. J. Chem. Soc., Chem.
Commun. 1993, 22, 1201–1203.
6. (a) Rampalli, S.; Chaudhari, S. S.; Akamanchi, K. G.
Synthesis 2000, 22, 78–80; (b) Sagawa, S.; Abe, H.; Hase,
Y.; Inaba, T. J. Org. Chem. 1999, 64, 4962–4965.
7. (a) Auge, J.; Leroy, F. Tetrahedron Lett. 1996, 37, 7715–
7716; (b) Meguro, M.; Asao, N.; Yamamoto, Y. J. Chem.
Soc., Perkin Trans. 1 1994, 2597–2601; (c) Chini, M.;
Crotti, P.; Favero, L.; Macchia, F.; Pineschi, M. Tetra-
hedron Lett. 1994, 35, 433–436; (d) Fujiwara, M.; Imada,
M.; Baba, A.; Matsuda, H. Tetrahedron Lett. 1989, 30,
739–742.
Scheme 1. The ionic intermediate in the ring-opening reaction medi-
ated by CoCl2.
the case of metal coordinated styrene oxide, the positive
charge on oxygen appears to be localized on the more
highly substituted benzylic carbon. Thus the nucleophile
attacks the benzylic carbon of the styrene oxide leading
to amino alcohol B.10a,b,11b This suggestion is supported
by the lower reactivity of p-chlorostyrene oxide towards
ring opening under these conditions. To explain the
reversal of stereochemistry in the ring opening of 1-hex-
ene oxide, where the rate of formation of the less stable
carbonium ion would be sluggish, we infer that steric
factors predominate over electronic factors.
General procedure: To a solution of anhydrous CoCl2
(1mmol) in acetonitrile (10mL), styrene oxide (10mmol)
and aniline (10mmol) were added. The reaction mixture
was stirred at room temperature for the required time
(Table 1). After completion of the reaction, the solvent
was removed under reduced pressure; the reaction mix-
ture was diluted with water and extracted with diethyl
ether (3 · 20mL). The organic extracts were washed
with aqueous NaHCO3, water, dried over anhydrous
Na2SO4 and evaporated under reduced pressure to pro-
vide the crude product, which was purified by column
chromatography (60–120mesh silica gel) to give a mix-
ture of A and B. Preparative HPLC of the mixture
yielded pure components. CoCl2Æ6H2O also promotes
the reaction in similar manner.
8. (a) Posner, G. H.; Rogers, D. Z. J. Am. Chem. Soc. 1977,
99, 8208–8214; (b) Harrak, Y.; Pujol, M. D. Tetrahedron
Lett. 2002, 43, 819–822.
9. Mojtahedi, M. M.; Saidi, M. R.; Bolourtchian, M.
J. Chem. Res. (S) 1999, 22, 128–129.
10. (a) Chandrasekhar, S.; Ramachandar, T.; Prakash, J. S.
Synthesis 2000, 22, 1817–1818; (b) Chakraborti, A. K.;
Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315–8319; (c)
Swamy, N. R.; Goud, T. V.; Reddy, S. M.; Krishnaiah, P.;
Venkateswarlu, Y. Synth. Commun. 2004, 34, 727–734; (d)
Sabitha, G.; Reddy, G. S. K. K.; Reddy, K. B.; Yadav, J.
S. Synthesis 2003, 2298–2300; (e) Pachon, L. D.; Gamez,
P.; vanBrussel, J. J. M.; Reedijk, J. Tetrahedron Lett. 2003,
44, 6025–6027.
11. (a) Weghe, P. V.; Collin, J. Tetrahedron Lett. 1995, 36,
1649–1652; (b) Reddy, L. R.; Reddy, M. A.; Bhanumathi,
N.; Rao, K. R. Synthesis 2001, 831–832.
12. Zhao, P. Q.; Xu, L. W.; Xia, C. G. Synlett 2004, 846–850.
13. Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narasaiah, A.
V. Tetrahedron Lett. 2003, 44, 1047–1050.
14. Khosropour, A. R.; Khodaei, M. M.; Ghozati, K. Chem.
Lett. 2004, 33, 304–305.
In summary, CoCl2 has been used as a mild and effective
catalyst for regioselective ring opening of oxiranes with
anilines to synthesize b-amino alcohols in good yields.
Here, styrene oxides undergo regioselective addition of
anilines at the highly substituted carbon to yield regio-
isomers B, predominantly.
15. Iqbal, J.; Pandey, A. Tetrahedron Lett. 1990, 31, 575–576.
16. Regioisomers B gives a base peak at m/z (M+À31) after
losing CH2OH. In the 1H NMR spectrum the benzylic
protons of the regioisomer B resonate upfield compared to
A. Thebenzylicprotonsof Aresonateataround4.9ppmand
those of B resonate at around 4.5ppm. See Refs. 4a and 10b.
17. Spectral data for new compounds, entry 1, 1A: viscous
Acknowledgements
We thank the Department of Science and Technology,
New Delhi (Project no. CHY/00-01/143/DST/GSUN)
for financial support.
1
liquid, H NMR (400MHz, CDCl3): d 7.42–7.06 (m, 8H,
ArH), 4.95 (dd, 1H, J = 7.9, 3.7Hz), 3.24–3.05 (m, 4H),
1.25–1.19 (AB quartet, 6H each, J = 5.9, 6.4Hz, 4CH3).
13C NMR (100MHz, CDCl3): d 142.7, 142.2, 142.1, 128.5,
127.8, 125.8, 124.1, 123.6, 73.4, 58.8, 27.5, 24.2. IR (neat)/
cmÀ1: 3392, 2960, 1590. MS (m/z): 297, 190 (base peak),
175, 160, 107. HRMS calculated for (M+H) = 298.2171,
found = 298.2195. Compound 1B: white solid, mp = 54–
References and notes
1. (a) Corey, E. J.; Zhang, F. Angew. Chem., Int. Ed. 1999,
38, 1931–1934; (b) Punniyamurthy, T.; Iqbal, J. Tetrahe-
dron Lett. 1997, 38, 4463–4466; (c) Chng, B. L.; Ganesan,
A. Bioorg. Med. Chem. Lett. 1997, 7, 1511–1514; (d)
Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.;
Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 8340–
8347.
1
55ꢁC, H NMR (400MHz, CDCl3): d 7.31–7.03 (m, 8H,
ArH), 4.10–3.85 (m, 3H), 3.13 (septet, 2H, J = 0.17Hz),
1.19 and 1.00 (2d, 6H each, J = 0.17Hz, 4CH3). 13C NMR
(100MHz, CDCl3): d 142.1, 141.1, 140.5, 128.6, 127.6,
127.0, 123.5, 65.9, 65.3, 27.5, 24.0. IR (neat)/cmÀ1: 3392,
2960, 1587. MS (m/z): 297, 266 (base peak), 190, 175,
160, 91. HRMS calculated for (M+H) = 298.2171,
found = 298.2149.
2. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996,
96, 835–875.