850
P.V. Ramachandran et al. / Journal of Fluorine Chemistry 128 (2007) 844–850
(f) P.V. Ramachandran, K.J. Padiya, V. Rauniyar, M.V.R. Reddy, H.C.
Brown, Tetrahedron Lett. 45 (2004) 1015–1017;
the product to be of 13% ee in the same isomer (S) as obtained
from the reaction with 1.
(g) P.V. Ramachandran, K.J. Padiya, M.V.R. Reddy, H.C. Brown, J.
Fluorine Chem. 125 (2004) 579–583;
5.9. (S)-1,1-Difluoro-2-propanol, 12b
(h) P.V. Ramachandran, K.J. Padiya, V. Rauniyar, M.V.R. Reddy, H.C.
Brown, J. Fluorine Chem. 125 (2004) 615–620.
[3] For a review on asymmetric aldol reactions of fluoroketones, see: V.
Soloshonok in ref. [2a], Chapter 7.
5.9.1. (a) From reduction with 1
The reduction of 11b with 1 was complete in 2 h. Workup as
ꢀ1
[4] (a) H.C. Brown, P.V. Ramachandran, in: A.F. Abdel-Magid (Ed.), ACS
Symposium Series, vol. 641, American Chemical Society, Washington,
DC, 1996, , Chapter 5;
cm
above provided 12b in 80% yield. bp 85–90 8C. IR v
neat:
max
3375 (OH); 1H NMR d (ppm) (CDCl3): 1.27 (t, J = 6.6 Hz, 3H,
CH3), 2.67 (br s, 1H, CHOH), 3.8–4.0 (m, 1H, H-C-OH), 5.59
(dt, J = 56.3, 4.1 Hz, 1H, CHF2); MS EI: m/z: 51 (M–
CH3CHOH)+ (100%); CI: m/z: 97 (MH)+ (100%). The GC
analysis of the MTPA derivative on a SPB-5 capillary column
showed the product to be of 5% ee.
(b) H.C. Brown, J. Chandrasekharan, P.V. Ramachandran, J. Am. Chem.
Soc. 110 (1988) 1539.
[5] (a) M.M. Midland, S.A. Zderic, J. Am. Chem. Soc. 104 (1982) 525;
(b) M.M. Midland, Chem. Rev. 89 (1989) 1553–1561;
(c) H.C. Brown, G.G. Pai, J. Org. Chem. 50 (1985) 1384.
´
[6] (a) P.V. Ramachandran, B. Gong, A.V. Teodorovie, H.C. Brown, Tetra-
hedron: Asymmetry 5 (1994) 1075;
(b) For a review, see: P.V. Ramachandran, H.C. Brown in Ref. [2], Chapter
6, 2006, pp. 179–228.
5.9.2. (b) From reduction with 2
The reduction of 11b with 2 was complete in 3 days. Workup
provided the product alcohol in 54% yield. The GC analysis of
the MTPA derivative on a Supelcowax capillary column
showed the product to be of 16% ee in the opposite isomer as
compared to the product from reduction with 1. We believe that
we obtain the (R)-isomer based on analogy with the reduction
of 7c with 2.
[7] Mosher has discussed the electronic and steric influences in the reduction
of trifluoromethyl ketones using asymmetric Grignard reagents almost 40
years ago, 2007.
(a) C. Aaron, D. Dull, J.L. Schmiegel, D. Jaeger, Y.O. Ohashi, H.S.
Mosher, J. Org. Chem. 32 (1967) 2797;
(b) J.D. Morrison, H.S. Mosher, Asymmetric Organic Reactions, Amer-
ican Chemical Society, Washington, DC, 1976, Chapter 5.
[8] (a) T. Hanamoto, T. Fuchikami, J. Org. Chem. 55 (1990) 4969–4971;
(b) Y. Itoh, M. Yamanaka, K. Mikami, J. Am. Chem. Soc. 126 (2004)
13174–13175;
5.10. (S)-(ꢀ)-1,1,1-trifluoro-2-propanol, 14b
(c) P.K. Mohanta, T.A. Davis, J.R. Gooch, R.A. Flowers II, J. Am. Chem.
Soc. 127 (2005) 11896–11897.
5.10.1. From reduction with 2
The reduction of 13b with 2 was complete in 4 days. Workup
provided 6f in 60% yield. bp 76–77 8C (literature [25] bp 77.8–
[9] R.S. Cahn, C. Ingold, V. Prelog, Angew. Chem. Int. Ed. 5 (1966) 385, The
R configuration is an artifact of Cahn-Ingold-Prelog rules.
[10] M. Srebnik, P.V. Ramachandran, H.C. Brown, J. Org. Chem. 53 (1988)
2916–2920.
22
77.9 8C). ½aꢁD ¼ ꢀ5:23ꢂ (neat) which corresponds to an optical
25
´
[11] P.V. Ramachandran, A.V. Teodorovic, H.C. Brown, Tetrahedron 49 (1993)
purity of 80.4% in the (S) isomer based on the reported
maximum rotation [11] of ½aꢁD ¼ ꢀ6:5ꢂ (neat). The GC
1725.
[12] (a) E.J. Corey, J.O. Link, S. Sarshar, Y Shao, Tetrahedron Lett. 33 (1992)
7103;
analysis of the MCF derivative on a SPB-5 capillary column
showed the product to be of 82% ee in the (S)-isomer.
(b) E.J. Corey, J.O. Link, R.K. Bakshi, Tetrahedron Lett. 33 (1992) 7107;
(c) E.J. Corey, J.O. Link, J. Am. Chem. Soc. 114 (1992) 1906;
(d) E.J. Corey, J.O. Link, Tetrahedron Lett. 33 (1992) 3431.
[13] P. Bravo, G. Resnati, Tetrahedron Lett. 28 (1987) 4865.
Acknowledgement
´
[14] P.V. Ramachandran, B. Gong, A.V. Teodorovic, H.C. Brown, Tetrahedron:
We gratefully acknowledge Herbert C. Brown Center for
Borane Research for support of this research.
Asym. 5 (1994) 1061.
[15] H.C. Brown, G.W. Kramer, A.B. Levy, M.M. Midland, Organic Synthesis
via Boranes, Wiley-Interscience, New York, 1975, Chapter 9.
[16] J.C. Nobrega, S.M.C. Goncalves, C. Peppe, Synth. Commun. 32 (2002)
3711.
References
[17] E.J. Corey, J.O. Link, Y. Shao, Tetrahedron Lett. 33 (1992) 3435.
[18] G.C. Barrett, D.M. Hall, M.K. Hargreaves, B. Moderai, J. Chem. Soc. (C)
(1971) 279.
[1] X.L. Qiu, W.D. Meng, F.L. Qing, Tetrahedron 60 (2004) 6711–6745;
(b) F.M.D. Ismail, J. Fluorine Chem. 118 (2002) 27;
(c) Y. Kumar, S. Muzammil, S. Tayyab, J. Biochem. 138 (2005) 335–341;
(d) A.G. Myers, J.K. Barbay, B. Zhong, J. Am. Chem. Soc. 123 (2001)
7207–7219.
[19] J.A. Dale, D.L. Dull, H.S. Mosher, J. Org. Chem. 34 (1969) 2543.
[20] J.W. Westley, B. Halpern, J. Org. Chem. 33 (1968) 3978.
[21] Chiraldex-GTA is the trademark of Alltech Associates Inc.
[22] R. Weidmann, A.R. Schoofs, A.C.R. Horeau, Seances Acad. Sci. Ser. 2
294 (1982) 319.
[2] (a) V.A. Soloshonok (Ed.), Enantiocontrolled Synthesis of Fluoro-organic
Compounds, Wiley, 1999;
(b) P.V. Ramachandran (Ed.), Asymmetric Fluoroorganic Chemistry,
American Chemical Society, Washington, DC, 2000;
(c) S. Sun, A. Adejare, Curr. Top. Med. Chem. 6 (2006) 1457–1464;
(d) C. Presenti, F. Viani, ChemBioChem (2004) 590;
(e) J.A. Sikorski, J. Med. Chem. 49 (2006) 1–22;
[23] T. Sakai, K. Wada, T. Murakami, K. Kohra, N. Imajo, Y. Ooga, S. Tsuboi,
A. Takeda, M. Utaka, Bull. Chem. Soc. Jpn. 65 (1992) 631.
[24] E.D. Bergmann, S. Cohen, J. Chem. Soc. (1958) 2259.
[25] J.W.C. Crawford, J. Chem. Soc. C. (1967) 2332.