10.1002/anie.201708857
Angewandte Chemie International Edition
COMMUNICATION
1
decrease of the storage modulus. In comparison, at 260 µg·mL‑
H. van Esch, Science 2015, 349, 1075-1079; g) E. Jee, T. Bánsági, A. F. Taylor,
J. A. Pojman, Angew. Chem. Int. Ed. 2016, 55, 2127-2131; h) S. Maiti, I.
Fortunati, C. Ferrante, P. Scrimin, L. J. Prins, Nat. Chem. 2016, 8, 725-731; i)
F. Tantakitti, J. Boekhoven, X. Wang, R. V. Kazantsev, T. Yu, J. Li, E. Zhuang,
R. Zandi, J. H. Ortony, C. J. Newcomb, L. C. Palmer, G. S. Shekhawat, M. O.
de la Cruz, G. C. Schatz, S. I. Stupp, Nat. Mater. 2016, 15, 469–476; j) A.
Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans,
Chem. Soc. Rev. 2017, 46 5476-5490; k) R. Merindol, A. Walther, Chem. Soc.
Rev. 2017, 46, 5588-5619; l) M. Tena-Solsona, B. Rieß, R. K. Grötsch, F. C.
Löhrer, C. Wanzke, B. Käsdorf, A. R. Bausch, P. Müller-Buschbaum, O. Lieleg,
J. Boekhoven, Nat. Commun. 2017, 8, 15895.
and 455 µg·mL‑1 GOx concentrations, the mechanical stability of
the peptide hydrogels is significantly reduced and the oxidative
damage proceeds much faster, the combination of which
compresses the time-domain of the transient hydrogels. In order
to confirm these observations, we performed fuel dependent
kinetic rheology experiments. At a constant GOx concentration of
1
650 µg·mL‑ , we varied the glucose concentration from 100 mM
to 300 mM (Figure 3E). In agreement with the previous
experiments, increasing the glucose concentration leads to an
enhancement of the catalysis rate and the formation of a stronger
transient hydrogel with an extended time-domain. We were thus
able to show, that by varying the enzyme and glucose
concentrations, an autonomous supramolecular hydrogelation
set-up is obtained with programmable lifetimes and tuneable
mechanical properties.
[3]
[4]
[5]
a) K. Jalani, S. Dhiman, A. Jain, G. J. Subi, Chem. Sci. 2017; b) S. Dhiman, A.
Jain, S. J. George, Angew. Chem. Int. Ed. 2017, 56, 1329-1333.
A. Sorrenti, J. Leira-Iglesias, A. Sato, T. M. Hermans, Nat. Commun. 2017, 8,
15899.
a) S. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789-16792;
b) C. G. Pappas, I. R. Sasselli, R. V. Ulijn, Angew. Chem. Int. Ed. 2015, 54,
8119–8123; c) J. K. Sahoo, C. G. Pappas, I. R. Sasselli, Y. M. Abul-Haija, R.
V. Ulijn, Angew. Chem. Int. Ed. 2017, 56, 6828-6832.
[6]
T. Heuser, E. Weyandt, A. Walther, Angew. Chem. Int. Ed. 2015, 54, 13258-
13262.
In summary, we present glutamic acid and methionine
containing dendritic peptide monomers, that are able to undergo
multi-stimuli responsive ß–sheet self-assembly in water. Using a
glucose oxidase catalyzed, glucose fueled interplay of pH- and
oxidation-triggers transiently stable supramolecular polymers are
obtained. Thermoresponsive side chains are able to induce the
formation of physical hydrogels at temperatures T > 30 °C and
peptide contents of 0.7 wt %. By adjusting the enzyme and
glucose concentration we tune the kinetics and lifetime of the
supramolecular polymers, which dictate the stiffness and time-
domain of the transient hydrogels. Furthermore, we show that
methionine sulfoxide reductase repair enzymes are able to
reverse the oxidative damage in the thioether side chains of the
monomers. Since reactive oxygen species play an important role
in signal transduction cascades, our strategy offers great potential
for applications of these dynamic responsive biomaterials in redox
microenvironments.[22]
[7]
[8]
C. A. Angulo-Pachon, J. F. Miravet, Chem. Commun. 2016, 52, 5398-5401.
S. B. Bankar, M. V. Bule, R. S. Singhal, L. Ananthanarayan, Biotechnol. Adv.
2009, 27, 489-501.
[9]
a) D. J. Adams, M. F. Butler, W. J. Frith, M. Kirkland, L. Mullen, P. Sanderson,
Soft Matter 2009, 5, 1856-1862; b) K. L. Morris, L. Chen, J. Raeburn, O. R.
Sellick, P. Cotanda, A. Paul, P. C. Griffiths, S. M. King, R. K. O’Reilly, L. C.
Serpell, D. J. Adams, Nat. Commun. 2013, 4, 1480; c) E. R. Draper, E. G. B.
Eden, T. O. McDonald, D. J. Adams, Nat. Chem. 2015, 7, 848-852.
a) H. G. Batz, V. Hofmann, H. Ringsdorf, Makromol. Chem. 1973, 169, 323-
325; b) A. Napoli, M. Valentini, N. Tirelli, M. Muller, J. A. Hubbell, Nat. Mater.
2004, 3, 183-189; c) A. Napoli, M. J. Boerakker, N. Tirelli, R. J. M. Nolte, N. A.
J. M. Sommerdijk, J. A. Hubbell, Langmuir 2004, 20, 3487-3491; d) B. L. Allen,
J. D. Johnson, J. P. Walker, ACS Nano 2011, 5, 5263-5272; e) P. Carampin,
E. Lallana, J. Laliturai, S. C. Carroccio, C. Puglisi, N. Tirelli, Macromol. Chem.
Phys. 2012, 213, 2052-2061; f) A. R. Rodriguez, J. R. Kramer, T. J. Deming,
Biomacromolecules 2013, 14, 3610-3614; g) J. R. Kramer, T. J. Deming, J.
Am. Chem. Soc. 2014, 136, 5547-5550; h) J. Herzberger, K. Fischer, D. Leibig,
M. Bros, R. Thiermann, H. Frey, J. Am. Chem. Soc. 2016, 138, 9212–9223.
a) Y. Hisamatsu, S. Banerjee, M. B. Avinash, T. Govindaraju, C. Schmuck,
Angew. Chem. Int. Ed. 2013, 52, 12550-12554; b) E. Krieg, E. Shirman, H.
Weissman, E. Shimoni, S. G. Wolf, I. Pinkas, B. Rybtchinski, J. Am. Chem.
Soc. 2009, 131, 14365-14373; c) D. Gorl, B. Soberats, S. Herbst, V.
Stepanenko, F. Wurthner, Chem. Sci. 2016, 7, 6786-6790.
[10]
[11]
[12]
Acknowledgements
a) H. Frisch, J. P. Unsleber, D. Lüdeker, M. Peterlechner, G. Brunklaus, M.
Waller, P. Besenius, Angew. Chem. Int. Ed. 2013, 52, 10097-10101; b) H.
Frisch, Y. Nie, S. Raunser, P. Besenius, Chem. Eur. J. 2015, 21, 3304-3309;
c) P. Ahlers, H. Frisch, P. Besenius, Polym. Chem. 2015, 6, 7245-7250.
G. R. Newkome, C. Shreiner, Chem. Rev. 2010, 110, 6338-6442.
a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40,
2004-2021; b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002,
67, 3057-3064.
We thank Willi Schmolke for help with the rheology and Prof.
Sebastian Seiffert for critical reading of the manuscript.
[13]
[14]
Keywords: supramolecular chemistry in water • transient self-
assembly • redox regulation • dynamic materials • kinetic control
[15]
[16]
a) A. Ghosh, M. Haverick, K. Stump, X. Yang, M. F. Tweedle, J. E. Goldberger,
J. Am. Chem. Soc. 2012, 134, 3647–3650; b) H. Frisch, P. Besenius,
Macromol. Rapid Commun. 2015, 36, 346-363.
[1]
a) J. M. Lehn, Science 2002, 295, 2400-2403; b) G. M. Whitesides, B.
Grzybowski, Science 2002, 295, 2418-2421; c) X. He, M. Aizenberg, O.
Kuksenok, L. D. Zarzar, A. Shastri, A. C. Balazs, J. Aizenberg, Nature 2012,
487, 214-218; d) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813-
817; e) Y. Tu, F. Peng, A. Adawy, Y. Men, L. K. E. A. Abdelmohsen, D. A.
Wilson, Chem. Rev. 2016, 116, 2023–2078; f) I. R. Epstein, B. Xu, Nat.
Nanotechnol. 2016, 11, 312-319; g) B. A. Grzybowski, W. T. S. Huck, Nat.
Nanotechnol. 2016, 11, 585-592; h) S. A. P. van Rossum, M. Tena-Solsona,
J. H. van Esch, R. Eelkema, J. Boekhoven, Chem. Soc. Rev. 2017, 46, 5519-
5535; i) R. Pascal, A. Pross, J. D. Sutherland, Open Biol. 2013, 3; j) R. F.
Ludlow, S. Otto, Chem. Soc. Rev. 2008, 37, 101-108.
a) K. J. Binger, M. D. W. Griffin, S. H. Heinemann, G. J. Howlett, Biochemistry
2010, 49, 2981-2983; b) J. C. Lim, Z. You, G. Kim, R. L. Levine, Proc. Natl.
Acad. Sci. U. S. A. 2011, 108, 10472-10477.
[17]
[18]
G. Piedrafita, M. Keller, M. Ralser, Biomolecules 2015, 5, 2101-2122.
R. Appel, J. Fuchs, S. M. Tyrrell, P. A. Korevaar, M. C. A. Stuart, I. K. Voets,
M. Schönhoff, P. Besenius, Chem. Eur. J. 2015, 21, 19257-19264.
a) J.-F. Lutz, Ö. Akdemir, A. Hoth, J. Am. Chem. Soc. 2006, 128, 13046-13047;
b) P. H. J. Kouwer, M. Koepf, V. A. A. Le Sage, M. Jaspers, A. M. van Buul, Z.
H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz, H. J. Kitto, R. Hoogenboom, S.
J. Picken, R. J. M. Nolte, E. Mendes, A. E. Rowan, Nature 2013, 493, 651-655.
a) L. Heinen, A. Walther, Soft Matter 2015, 11, 7857-7866; b) L. Heinen, T.
Heuser, A. Steinschulte, A. Walther, Nano Lett. 2017, 17, 4989-4995.
F. Trausel, F. Versluis, C. Maity, J. M. Poolman, M. Lovrak, J. H. van Esch, R.
Eelkema, Acc. Chem. Res. 2016, 49, 1440-1447.
[19]
[2]
a) J. Boekhoven, A. M. Brizard, K. N. K. Kowlgi, G. J. M. Koper, R. Eelkema,
J. H. van Esch, Angew. Chem. Int. Ed. 2010, 49, 4825-4828; b) Y. Tidhar, H.
Weissman, S. G. Wolf, A. Gulino, B. Rybtchinski, Chem. Eur. J. 2011, 17,
6068-6075; c) P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders,
P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature
2012, 481, 492-496; d) J. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van
der Mee, C. B. Minkenberg, E. Mendes, J. H. van Esch, R. Eelkema, Nat.
Chem. 2013, 5, 433–437; e) E. Mattia, S. Otto, Nat. Nanotechnol. 2015, 10,
111-119; f) J. Boekhoven, W. E. Hendriksen, G. J. M. Koper, R. Eelkema, J.
[20]
[21]
[22]
a) H. Wu, Cell 2013, 153, 287-292; b) M. W. Tibbitt, R. Langer, Acc. Chem.
Res. 2017, 50, 508-513.
This article is protected by copyright. All rights reserved.