Cu(II)–cyclen modified polyurethane (1) does not exhibit any signif-
icant increase in fibrinogen adsorption compared to that of the
unmodified TPU (P > 0.1, see ESI, Fig. S12†). This result suggests
that the new derivatization chemistry to tether the Cu2+–cyclen
catalyst to the TPU material does not alter the fundamental protein
adsorption properties of the material compared to those of the base
polymer. Hence, with the added NO generation activity, the new
polymer could further enhance thromboresistance of this biomedical
grade polyurethane.
for carrying out the preliminary rabbit ECC experiments with the
new polymer described in this work.
Notes and references
1 D. Giustarini, A. Milzani, R. Colombo, I. Dalle-Donne and R. Rossi,
Trends Pharmacol. Sci., 2004, 25, 311.
2 P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and
A. J. Janczuk, Chem. Rev., 2002, 102, 1091.
3 W. Cha and M. E. Meyerhoff, Biomaterials, 2007, 28, 19.
4 J. Yang, J. L. Welby and M. E. Meyerhoff, Langmuir, 2008, 24,
10265.
5 S. Hwang and M. E. Meyerhoff, J. Mater. Chem., 2007, 17,
1462.
Conclusions
6 T. C. Major, D. O. Brant, C. P. Burney, K. A. Amoako,
G. M. Annich, M. E. Meyerhoff, H. Handa and R. H. Bartlett,
Biomaterials, 2011, 32, 5957.
In conclusion, a new NO generating polymer, Cu(II)–cyclen–PEG-
TPU (1), was successfully prepared. This material exhibits greatly
improved catalytic efficiency for generating NO from RSNO species
compared to those of analogous materials reported previously. This
improvement is achieved by optimizing the synthesis and tethering a
more active catalyst to a commercial PU structure. Based on the
pendant isocyanate sites created on the isocyanated polymer (TPU-
NCO) and the final copper content, a mean yield of 50% for each step
was obtained during the entire synthesis of the polymer. The new
polymer is able to generate 6–10 ꢁ 10ꢀ10 mol cmꢀ2 minꢀ1 surface
flux of NO in the presence of 5 mM GSNO and 16 ꢁ 10ꢀ10 mol cmꢀ2
minꢀ1 NO flux from 0.5 mM CySNO in PBS buffer (10 mM, pH 7.4).
No evidence of significant leaching of copper ions is observed.
Exposure to whole blood or plasma reduces the rate of NO
7 A. P. Dicks, H. R. Swift, D. L. H. Williams, A. R. Butler, H. H. Al-
Sa’doni and B. G. Cox, J. Chem. Soc., Perkin Trans. 2, 1996, 481.
8 S. Hwang and M. E. Meyerhoff, Biomaterials, 2008, 29, 2443.
9 S. C. Puiu, Z. Zhou, C. C. White, L. J. Neubauer, Z. Zhang,
L. E. Lange, J. A. Mansfield, M. E. Meyerhoff and
M. M. Reynolds, J. Biomed. Mater. Res., Part B, 2009, 91B, 203.
10 L. Wang, S. Wang and J. z. Bei, Polym. Adv. Technol., 2004, 15, 617.
11 Z. Zhou and M. E. Meyerhoff, Biomaterials, 2005, 26, 6506.
12 K. D. Park, A. Z. Piao, H. Jacobs, T. Okano and S. W. Kim,
J. Polym. Sci., Part A: Polym. Chem., 1991, 29, 1725.
13 M. C. Styka, R. C. Smierciak, E. L. Blinn, R. E. DeSimone and
J. V. Passariello, Inorg. Chem., 1978, 17, 82.
14 S. C. Askew, D. J. Barnett, J. McAninly and D. L. H. Williams,
J. Chem. Soc., Perkin Trans. 2, 1995, 741.
15 D. L. H. Williams, Acc. Chem. Res., 1999, 32, 869.
16 M. W. Vaughn, L. Kuo and J. C. Liao, Am. J. Physiol., 1998, 274,
H1705.
17 M. W. Vaughn, L. Kuo and J. C. Liao, Am. J. Physiol., 1998, 274,
H2163.
18 D. Giustarini, A. Milzani, R. Colombo, I. Dalle-Donne and R. Rossi,
Clin. Chim. Acta, 2003, 330, 85.
19 M. B. Gorbet and M. V. Sefton, Biomaterials, 2004, 25, 5681.
20 T. C. Major, D. O. Brant, M. M. Reynolds, R. H. Bartlett,
M. E. Meyerhoff, H. Handa and G. M. Annich, Biomaterials, 2010,
31, 2736.
generation, but physiological fluxes still remain (1–5
ꢁ
10ꢀ10 mol cmꢀ2 minꢀ1). This value is much higher than that which
can be obtained from an earlier polymer (2) that utilizes different
linking chemistry. The new polymer reported here is a very attractive
material for future studies to assess the improved thromboresistance
achieved with and without supplementation of exogenous RSNOs to
the bloodstream of the animals, and potentially, in humans.
21 D. A. Cheresh, S. A. Berliner, V. Vicente and Z. M. Ruggeri, Cell,
1989, 58, 945.
Acknowledgements
22 L. Tang and J. W. Eaton, J. Exp. Med., 1993, 178, 2147.
23 J. S. Bennett and G. Vilaire, J. Clin. Invest., 1979, 64, 1393.
24 G. A. Marguerie, T. S. Edgington and E. F. Plow, J. Biol. Chem.,
1980, 255, 154.
25 G. A. Marguerie, N. Thomas-Maison, M. H. Ginsberg and
E. F. Plow, Eur. J. Biochem., 1984, 139, 5.
26 B. Savage and Z. M. Ruggeri, J. Biol. Chem., 1991, 266, 11227.
27 T. Zaidi, L. McIntire, D. Farrell and P. Thiagarajan, Blood, 1996, 88,
2967.
This work is financially supported by the National Institutes of
Health fund (Program no. EB-004527). The authors acknowledge
Joshua Pohlmann in the ECMO research lab at the University of
Michigan Medical School, for providing the fresh sheep blood, and
Dr Ted Huston in the Department of Geology at the University of
Michigan, for conducting the copper analysis using ICP-HRMS. In
addition, the authors thank Dr Terry Major in the ECMO laboratory
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 18784–18787 | 18787