Paper
NJC
7 S. Gomez, J. A. Peters and T. Maschmeyer, Adv. Synth. Catal.,
2002, 344, 1037–1057.
´
8 J. Bodis, L. Lefferts, T. Mu¨ller, R. Pestman and J. Lercher,
Catal. Lett., 2005, 104, 23–28.
9 B. Zimmermann, J. Herwig and M. Beller, Angew. Chem., Int.
Ed., 1999, 111, 2515–2518.
10 H. Klein, R. Jackstell, M. Kant, A. Martin and M. Beller,
Chem. Eng. Technol., 2007, 30, 721–725.
11 C. Gunanathan and D. Milstein, Angew. Chem., Int. Ed.,
2008, 47, 8661–8664.
12 D. Pingen, C. Mu¨ller and D. Vogt, Angew. Chem., Int. Ed.,
2010, 122, 8307–8310.
13 Q. Shen and J. F. Hartwig, J. Am. Chem. Soc., 2006, 128,
10028–10029.
Scheme 5 Selective hydrosilylation of different carbonyl groups.
14 D. S. Surry and S. L. Buchwald, J. Am. Chem. Soc., 2007, 129,
10354–10355.
15 R. J. Lundgren, B. D. Peters, P. G. Alsabeh and M. Stradiotto,
Angew. Chem., Int. Ed., 2010, 49, 4071–4074.
16 J. L. Klinkenberg and J. F. Hartwig, Angew. Chem., Int. Ed.,
2011, 50, 86–95.
Adding a second amount of catalyst improved product yields
and conversion (Table 3, entries 3, 7, 9 and 11). While exploring
different functional groups, we discovered that our method-
ology is also a useful tool for selective reduction of esters
(70% isolated yield) and ketones (79% isolated yield) in the
presence of a nitrile moiety (Scheme 5). This is possible since
these carbonyl groups are more reactive compared to the C–N
triple bond.
17 J. Seyden-Penne, Reductions by Alumino and Borohydrides in
Organic Synthesis, Wiley-VCH, New York, 2nd edn, 1997.
¨
18 C. Gunanathan, M. Holscher and W. Leitner, Eur. J. Inorg.
Chem., 2011, 3381–3386.
Additionally, we found that benzamide can be reduced to
yield the primary amine easily with only adding the catalyst
twice during the reaction time (Scheme 5). Since we optimized
the reaction conditions for the hydrosilylation of nitriles, the
obtained yields for the reduction of different functional groups
are not optimized and further variations might offer increased
yields.
In summary, we presented the first metal-free hydrosilyla-
tion of aromatic nitriles to the corresponding primary amines.
The procedure makes use of simple TBAF as a commercially
available catalyst and phenylsilane as a hydride source. Inter-
estingly, under very mild reaction conditions a rare transaryla-
tion of the phenylsilane occurs. In addition, this protocol can
be applied for the reduction of different carbonyl moieties
(amides, esters, ketones), too.
19 S. Enthaler, D. Addis, K. Junge, G. Erre and M. Beller,
Chem.–Eur. J., 2008, 14, 9491–9494.
20 D. Addis, S. Enthaler, K. Junge, B. Wendt and M. Beller,
Tetrahedron Lett., 2009, 50, 3654–3656.
21 I. Cabrita and A. C. Fernandes, Tetrahedron, 2011, 67,
8183–8186.
22 R. Reguillo, M. Grellier, N. Vautravers, L. Vendier and
S. Sabo-Etienne, J. Am. Chem. Soc., 2010, 132, 7854–7855.
23 S. Das, S. Zhou, D. Addis, S. Enthaler, K. Junge and
M. Beller, Top. Catal., 2010, 53, 979–984.
¨
24 S. Das, B. Wendt, K. Moller, K. Junge and M. Beller, Angew.
Chem., Int. Ed., 2012, 51, 1662–1666.
25 S. Laval, W. Dayoub, A. Favre-Reguillon, M. Berthod,
P. Demonchaux, G. Mignani and M. Lemaire, Tetrahedron
Lett., 2009, 50, 7005–7007.
26 A. M. Caporusso, N. Panziera, P. Pertici, E. Pitzalis,
P. Salvadori, G. Vitulli and G. Martra, J. Mol. Catal. A: Chem.,
1999, 150, 275–285.
Notes and references
1 H. A. Wittcoff, B. G. Reuben and J. S. Plotkin, in Industrial 27 D. Addis, S. Das, K. Junge and M. Beller, Angew. Chem., Int.
Organic Chemicals, John Wiley & Sons, Inc., 2005, pp. 15–56.
Ed., 2011, 50, 6004–6011.
2 H. Zollinger, Color Chemistry: Syntheses, Properties, and 28 R. J. P. Corriu, J. J. E. Moreau and M. Pataud-Sat,
Applications of Organic Dyes and Pigments, WILEY-VCH
GmbH & Co. KGaA, Weinheim, 3rd revised edn, 2003.
3 K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry,
WILEY-VCH Verlag & Co. KGaA, Weinheim, 2003.
4 S. A. Lawrence, Amines: Synthesis. Properties and Applications,
Cambridge University, Cambridge, 2004.
5 M. S. Gibson and R. W. Bradshaw, Angew. Chem., Int. Ed.,
1968, 7, 919–930.
6 E. M. Dangerfield, C. H. Plunkett, A. L. Win-Mason,
J. Organomet. Chem., 1982, 228, 301–308.
29 D. V. Gutsulyak and G. I. Nikonov, Angew. Chem., Int. Ed.,
2010, 49, 7553–7556.
30 T. Murai, T. Sakane and S. Kato, J. Org. Chem., 1990, 55,
449–453.
31 J. Boyer, R. J. P. Corriu, R. Perz and C. Reye, Tetrahedron,
1981, 37, 2165–2171.
32 M. Fujita and T. Hiyama, J. Am. Chem. Soc., 1984, 106,
4629–4630.
B. L. Stocker and M. S. M. Timmer, J. Org. Chem., 2010, 33 D. Yang and D. D. Tanner, J. Org. Chem., 1986, 51, 2267–2270.
75, 5470–5477.
34 M. Fujita and T. Hiyama, J. Org. Chem., 1988, 53, 5405–5415.
c
2064 New J. Chem., 2013, 37, 2061--2065
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2013