Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
011, 50, 9260. (d) Neal, E. A.; Goldup, S. M. Chem. Commun. 2014, 50,
ESI). A small quantity of analytically pure of 9 was obtained by crystalli-
zation for characterization.
5128. (f) Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer,
A. L. Chem. Rev. 2015, 115, 10081. (g) Xue, M.; Yang, Y.; Chi, X.; Yan,
X.; Huang, F. Chem. Rev. 2015, 115, 7398. (h) Lewis, J. E. M.; Galli, M.;
Goldup, S. M. Chem. Commun. 2017, 53, 298. (i) Bruns, C. J.; Stoddart, J.
F. The Nature of the Mechanical Bond; John Wiley & Sons, Inc.: Hobo-
ken, NJ, USA, 2016. (j) Lewis, J. E. M.; Beer, P. D.; Loeb, S. J.; Goldup,
S. M. Chem. Soc. Rev. 2017, 46, 2577.
(19) For selected recent reviews that discuss chirality in interlocked
molecules see ref. 2d,i and: (a) Evans, N. H. Chem. Eur. J. 2018, 24, 3101.
(b) Pairault, N.; Niemeyer, J. Synlett 2018, DOI: 10.1055/s-0036-1591934.
(20) Mochizuki, Y.; Ikeyatsu, K.; Mutoh, Y.; Hosoya, S.; Saito, S. Org.
Lett. 2017, 19, 4347.
(21) (a) Alvarez-Pérez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M.
Z. J. Am. Chem. Soc. 2008, 130, 1836. (b) Carlone, A.; Goldup, S. M.;
Lebrasseur, N.; Leigh, D. A.; Wilson, A. J. Am. Chem. Soc. 2012, 134,
(3) Reviews that focus on catenanes: (a) Evans, N. H.; Beer, P. D.
Chem. Soc. Rev. 2014, 43, 4658. (b) Gil-Ramírez, G.; Leigh, D. A.; Ste-
phens, A. J. Angew. Chem. Int. Ed. 2015, 54, 6110.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
8321.
(22) H
that H
1
(4) Reviews on the development of molecular machines: (a) Balzani,
a
of 5 displays a double-doublet splitting by H NMR suggesting
V.; Credi, A.; Venturi, M. Chem. Soc. Rev. 2009, 38, 1542. (b) Coskun,
A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A.
Chem. Soc. Rev. 2012, 41, 19. (c) Erbas-Cakmak, S.; Leigh, D. A.;
McTernan, C. T.; Nussbaumer, A. L. Chem. Rev. 2015, 115, 10081. (d)
Leigh, D. A. Angew. Chem. Int. Ed. 2016, 55, 14506.
b
are inequivalent. 5 and 7 also exhibit broadening of other signals
which may indicate that pirouetting is slower in these cases.
(23) Dietrich-Buchecker, C. O.; Edel, A.; Kintzinger, J. P.; Sauvage, J.
P. Tetrahedron 1987, 43, 333.
(24) Selected examples: (a) Amabilino, D. B.; Ashton, P. R.; Reder, A.
S.; Spencer, N.; Stoddart, J. F. Angew. Chem., Int. Ed. 1994, 33, 1286. (b)
Leigh, D. A.; Pritchard, R. G.; Stephens, A. J. Nat. Chem. 2014, 6, 978.
(c) Wood, C. S.; Ronson, T. K.; Belenguer, A. M.; Holstein, J. J.; Nitsch-
ke, J. R. Nat. Chem. 2015, 7, 354. (d) Zhu, R.; Lübben, J.; Dittrich, B.;
Clever, G. H. Angew. Chem. Int. Ed. 2015, 54, 2796. (e) Black, S. P.;
Wood, D. M.; Schwarz, F. B.; Ronson, T. K.; Holstein, J. J.; Stefankie-
wicz, A. R.; Schalley, C. A.; Sanders, J. K. M.; Nitschke, J. R. Chem. Sci.
2016, 7, 2614. (f) Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.;
Fujita, M. Angew. Chem. Int. Ed. 2016, 55, 4519.
(25) (a) Hoekman, S.; Kitching, M. O.; Leigh, D. A.; Papmeyer, M.;
Roke, D. J. Am. Chem. Soc. 2015, 137 (24), 7656. (b) Galli, M.; Lewis, J.
E. M.; Goldup, S. M. Angew. Chem. Int. Ed. 2015, 54, 13545.
(26) (a) Winn, J.; Pinczewska, A.; Goldup, S. M. J. Am. Chem. Soc.
2013, 135 (36), 13318. (b) Noor, A.; Lo, W. K. C.; Moratti, S. C.; Crow-
ley, J. D. Chem. Commun. 2014, 50, 7044. (c) Noor, A.; Moratti, S. C.;
Crowley, J. D. Chem. Sci. 2014, 5, 4283. (d) Ngo, T. H.; Labuta, J.; Lim,
G. N.; Webre, W.; DSouza, F.; Karr, P. A.; Lewis, J. E. M.; Hill, J. P.;
Ariga, K.; Goldup, S. Chem. Sci. 2017, 8, 6679.
(27) (a) Langton, M. J.; Xiong, Y.; Beer, P. D. Chem. Eur. J. 2015, 21,
18910. (b) Brown, A.; Lang, T.; Mullen, K. M.; Beer, P. D. Org. Biomol.
Chem. 2017, 15, 4587. (c) Lim, J. Y. C.; Bunchuay, T.; Beer, P. D. Chem.
Eur. J. 2017, 23, 4700. (d) Lim, J. Y. C.; Marques, I.; Thompson, A. L.;
Christensen, K. E.; Félix, V.; Beer, P. D. J. Am. Chem. Soc. 2017, 139,
3122. (e) Denis, M.; Qin, L.; Turner, P.; Jolliffe, K.; Goldup, S. M. An-
gew. Chem. Int. Ed. 2018, DOI: 10.1002/anie.201713105. (f) Denis, M.;
Pancholi, J.; Jobe, K.; Watkinson, M.; Goldup, S. M. Angew. Chemie Int.
Ed. 2018, DOI: 10.1002/anie.201712931.
(28) See (11) and: (a) Lewandowski, B.; De Bo, G.; Ward, J. W.; Pap-
meyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann,
D.; Goldup, S. M.; D’Souza, D. M.; Fernandes, A. E.; Leigh, D. A. Sci-
ence. 2013, 339, 189. (b) De Bo, G.; Kuschel, S.; Leigh, D. a; Lewan-
dowski, B.; Papmeyer, M.; Ward, J. W. J. Am. Chem. Soc. 2014, 136,
5811. (c) De Bo, G.; Gall, M. A. Y.; Kitching, M. O.; Kuschel, S.; Leigh,
D. A.; Tetlow, D. J.; Ward, J. W. J. Am. Chem. Soc. 2017, 139, 10875.
(29) (14b) and: (a) Goldup, S. M.; Leigh, D. A.; McGonigal, P. R.;
Ronaldson, V. E.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010, 132, 315. (b)
Barran, P. E.; Cole, H. L.; Goldup, S. M.; Leigh, D. A.; McGonigal, P. R.;
Symes, M. D.; Wu, J.; Zengerle, M. Angew. Chem. Int. Ed. 2011, 50,
12280. (c) Bordoli, R. J.; Goldup, S. M. J. Am. Chem. Soc. 2014, 136,
4817. (e) Neal, E. A.; Goldup, S. M. Chem. Sci. 2015, 6, 2398. (f) Neal, E.
A.; Goldup, S. M. Angew. Chem. Int. Ed. 2016, 55, 12488.
(5) Nobel lectures on the subject of molecular machines: (a) Sauvage, J.
P. Angew. Chem. Int. Ed. 2017, 56, 11080. (b) Stoddart, J. F. Angew.
Chem. Int. Ed. 2017, 56, 11094. (c) Feringa, B. L. Angew. Chem. Int. Ed.
2
017, 56, 11060.
6) See ref (1e) and: (a) Fahrenbach, A. C.; Bruns, C. J.; Cao, D.;
(
Stoddart, J. F. Acc. Chem. Res. 2012, 45, 1581. (b) Fahrenbach, A. C.;
Bruns, C. J.; Li, H.; Trabolsi, A.; Coskun, A.; Stoddart, J. F. Acc. Chem.
Res. 2014, 47, 482.
(7) Barnes, J. C.; Fahrenbach, A. C.; Cao, D.; Dyar, S. M.; Frasconi,
M.; Giesener, M. A.; Benítez, D.; Tkatchouk, E.; Chernyashevskyy, O.;
Shin, W. H.; Li, H.; Sampath, S.; Stern, C. L.; Sarjeant, A. A.; Hartlieb, K.
J.; Liu, Z.; Carmieli, R.; Botros, Y. Y.; Choi, J. W.; Slawin, A. M. Z.;
Ketterson, J. B.; Wasielewski, M. R.; Goddard III, W. A.; Stoddart, J. F.
Science. 2013, 339, 429.
(8) (a) Vögtle, F.; Meier, S.; Hoss, R. Angew. Chem. Int. Ed. Engl.
992, 31, 1619. (b) Hunter, C. A. J. Am. Chem. Soc. 1992, 114, 5303. (c)
1
Johnston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D. Angew.
Chem. Int. Ed. Engl. 1995, 34, 1209. (d) Vögtle, F.; Dünnwald, T.;
Schmidt, T. Acc. Chem. Res. 1996, 29, 451. (e) Leigh, D. A.; Venturini,
A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem. Eur. J. 2004, 10,
4
960.
9) (a) Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kintzinger, J. Tetra-
(
hedron Lett. 1983, 24 (46), 5095. (b) Dietrich-Buchecker, C. O.; Sauvage,
J. P.; Kern, J. M. J. Am. Chem. Soc. 1984, 106, 3043.
(10) (a) Crowley, J. D.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.;
McBurney, R. T. Chem. Soc. Rev. 2009, 38, 1530. (b) Denis, M.; Goldup,
S. M. Nat. Rev. Chem. 2017, 1, 61.
(11) Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli,
M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. Chem. Sci. 2016, 7, 3154.
(12) (a) Sato, Y.; Yamasaki, R.; Saito, S. Angew. Chem. Int. Ed. 2009,
4
8, 504. (b) Goldup, S. M.; Leigh, D. A.; Long, T.; McGonigal, P. R.;
Symes, M. D.; Wu, J. J. Am. Chem. Soc. 2009, 131, 15924. (c) Ito, K.;
Mutoh, Y.; Saito, S. J. Org. Chem. 2017, 82, 6118.
(13) Lahlali, H.; Jobe, K.; Watkinson, M.; Goldup, S. M. Angew.
Chem. Int. Ed. 2011, 50, 4151.
(14) (a) Aucagne, V.; Hänni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker,
D. B. J. Am. Chem. Soc. 2006, 128, 2186. (b) Aucagne, V.; Berna, J.;
Crowley, J. D.; Goldup, S. M.; Hänni, K. D.; Leigh, D. A.; Lusby, P. J.;
Ronaldson, V. E.; Slawin, A. M. Z.; Viterisi, A.; Walker, D. B. J. Am.
Chem. Soc. 2007, 129, 11950.
(15) (a) Lewis, J. E. M.; Winn, J.; Cera, L.; S. M. J. Am. Chem. Soc.
016, 138, 16329. (b) Lewis, J. E. M.; Winn, J.; Goldup, S. M. Molecules
017, 22, 89.
2
2
(
16) Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli,
M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. Chem. Sci. 2016, 7, 3154.
17) 2a and 2b produce 3a and 3b respectively as the sole interlocked
products (Figures S134-5). The crude reaction mixtures of 2c and 2d
contained traces of [2]catenanes derived from the homodimer of 1 (Figure
S136-7).
(
(18) The isolated yield of 9 was determined from the mass of a purified
sample contaminated with ~ 20% dimeric triazole macrocycle S14 (see
4
ACS Paragon Plus Environment