1152
A. A. ABDEL AZIZ
identical experimental conditions. These findings clearly indi-
cated that the complexes have many potential practical appli-
cations, like the development of nucleic acid molecular probes
and new therapeutic reagents for diseases.
7. Earnshaw, A. Introduction to Magnetochemistry; Academic Press: London,
968.
1
8
. Rishi, A.K.; Garg, B.S.; Singh, R.P. Tirimetric determination of cobalt(II)
with EDTA using 1-(2-Pyridylazo)-2-phenanthrol (PAP) as a visual indica-
tor. Fresenius’ J. Anal. Chem. 1972, 259, 288–288.
9. Vogel, A.I. Text Book of Quantitative Chemical Analysis, 5th ed.; Long-
mans: London, 1998.
10. Macarovici, C.G. Inorganic Quantitative Chemical Analysis; Editura
REFERENCES
Academiei R S R: Bucureti, 1979.
11. Marmur, J. A procedure for the isolation of deoxyribonucleic acid from
1
. (a) Milacic, V.; Chen, D.; Ronconi, L.; Landis-Piwowar, K.R.; Fregona,
D.; Dou, Q.P. A novel anticancer gold(III) dithiocarbamate compound in-
hibits the activity of a purified 20S proteasome and 26S proteasome in
human breast cancer cell cultures and xenografts. Cancer Res. 2006, 66,
micro-organisms. J. Mol. Biol. 1961, 3, 208–218.
12. Reichmann, M.E.; Rice, S.A.; Thomas, C.A.; Doty, P. A further examination
of the molecular weight and size of deoxypentose nucleic acid. J. Am. Chem.
Soc. 1954, 76, 3047–3053.
10478–10486. (b) Kostova, I. Gold coordination complexes as anticancer
agents. Anti-Cancer Agents Med. Chem. 2006, 6, 19–32.
13. Khan, N.H.; Pandya, N.; Kumar, M.; Bera, P.K.; Kureshy, R.I.; Abdi,
S.H.R.; Bajaj, H.C. Influence of chirality using Mn(III) salen complexes
on DNA binding and antioxidant activity. Org. Biomol. Chem. 2010, 19,
4297–4307.
14. Suksrichavalit, T.; Prachayasittikul, S.; Nantasenamat, C.; Na-Ayudhya,
C.I.; Prachayasittikul, V. Copper complexes of pyridine derivatives with
superoxide scavenging and antimicrobial activities. Eur. J. Med. Chem.
2009, 44, 3259–3265.
15. Doctrow, S.R.; Huffman, K.; Marcus, C.B.; Tocco, G.; Malfroy, E.; Adi-
nolfi, C.A.; Kruk, H.; Baker, K.; Lazarowych, N.; Mascarenhas, J.; Malfroy,
B. Salen-Manganese Complexes as Catalytic Scavengers of Hydrogen Per-
oxide and Cytoprotective Agents: Structure–Activity Relationship Studies.
J. Med. Chem. 2002, 45, 4549–4558.
2
. Siddiqi, Z.A.; Sharma, P.K.; Shahid, M.; Khalid, M.; Anjuli, Siddique, A.;
Kumar, S. Superoxide scavenging and antimicrobial activities of novel tran-
sition metal complexes of oxydiacetate dianion as primary ligand: spectral
characterization, cyclic voltammetric investigations and crystal structure.
Eur. J. Med. Chem. 2012, 57, 102–111.
. (a) Panja, A. Mononuclear cobalt(III) and iron(II) complexes with diimine
ligands: Synthesis, structure, DNA binding and cleavage activities, and
oxidation of 2-aminophenol. Polyhedron. 2012, 43, 22–30. (b) Sardar, D.;
Datta, P.; Das, S.; Saha, B.; Samanta, S.; Bhattacharya, D.; Karmakar,
P.; Chen, C.; Chen, C.; Sinha, C. Synthesis, structure, DNA interaction
and nuclease activity of rhodium(III)–arylazoimidazole complexes. Inorg.
Chim. Acta. 2013, 394, 98–106.
3
4
. Liu, C.L.; Wang, M.; Zhang, T.L.; Sun, H.Z. DNA hydrolysis promoted
by di- and multi-nuclear metal complexes. Coord. Chem. Rev. 2004, 248,
16. Winterbourn, C.C. Hydroxyl radical production in body fluids. Roles of
metal ions, ascorbate and superoxide. Biochem. J. 1981, 198, 125–131.
17. Sadana, A.K.; Mirza, Y.; Aneja, K.R.; Prakash, O. Hypervalent iodine
mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a] pyridines and 1-
aryl/hetryl 5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents.
Eur. J. Med. Chem. 2003, 38, 533–536.
1
47–168.
5
. (a) Chohan, Z.H.; Pervez, H.; Khan, K.M.; Supuran, C.T. Organometallic-
based Antibacterial and Antifungal Compounds: Transition Metal Com-
plexes of 1,1-Diacetylferrocene-derived Thiocarbohydrazone, Carbohydra-
zone, thiosemicarbazone and Semicarbazone. J. Enzyme Inhib. Med. Chem.
18. Andrews, J.M. Determination of minimum inhibitory concentrations. J.
2
005, 20, 81–88. (b) Li, Y.; Yang, Z.; Wu, J. Synthesis, crystal structures,
Antimicrob. Chemother. 2001, 48, 5–16.
biological activities and fluorescence studies of transition metal complexes
with 3-carbaldehyde chromone thiosemicarbazone Eur. J. Med. Chem.
19. Dean, J.A. Lange’s Hand Book of Chemistry, 4th ed.; McGraw-Hill: New
York, 1992.
2
010, 45, 5692–5701.
20. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination
Compounds, 5th ed.; Wiley-Interscience: New York, 1997.
21. Kovacic, J.E. The C N stretching frequency in the infrared spectra of
Schiff’s base complexes—I. Copper complexes of salicylidene anilines.
Spectrochim. Acta A. 1967, 3, 183–187.
6
. (a) Patil, S.A.; Unki, S.N.; Kulkarni, A.D.; Naika, V.H.; Badami, P.S. Syn-
thesis, characterization, in vitro antimicrobial and DNA cleavage studies
of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff
bases. J. Mol. Struct. 2011, 985, 330–338. (b) Li, Y.; Liu, Z.; Li, T.; Yang,
Z.; Wang, B. Synthesis, characterization, DNA binding properties and an-
tioxidant activity of Ln(III) complexes with Schiff base ligand derived
from 3-carbaldehyde chromone and aminophenazone. J. fluoresc. 2011,
¨
22. Odaba s¸ o g˘ lu, M.; Albayrak, C¸ .; Ozkanca, R.; Akyan, F.Z.; Lonecke, P.J.
Some polyhydroxy azo–azomethine derivatives of salicylaldehyde: Synthe-
sis, characterization, spectroscopic, molecular structure and antimicrobial
activity studies. J. Mol. Struct. 2007, 840, 71–89.
2
1, 1091–1102. (c) Bahaffi, S.O.; Abdel Aziz, A.A.; El-Naggar, M.M.
Synthesis, spectral characterization, DNA binding ability and antibacterial
screening of copper(II) complexes of NOON tetradentate Schiff bases bear-
ing different bridges. J. Mol. Struct. 2012, 1020, 188–196. (d) Rajaa, G.;
Butcherb, R.J.; Jayabalakrishnana, C. Studies on synthesis, characteriza-
tion, DNA interaction and cytotoxicity of ruthenium(II) Schiff base com-
plexes. Spectrochim. Acta A. 2012, 94, 210–215. (e) Pradeepa, S.M.; Naik,
H.S.B.; Kumar, B.V.; Priyadarsini, K.I.; Barik, A.; Naik, T.R.R. Cobalt(II),
23. Majumder, A.; Rosair, G.M.; Mallick, A.; Chattopadhyay, N.; Mitra, S. Syn-
thesis, structures and fluorescence of nickel, zinc and cadmium complexes
with the N, N,O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-
phenylamine. Polyhedron. 2006, 25, 1753–1762.
24. Naeimi, H.; Safari, J.; Heidarnezhad, A. Synthesis of Schiff base ligands
derived from condensation of salicylaldehyde derivatives and synthetic di-
amine. Dyes Pigm. 2007, 73, 251–253.
Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as pho- 25. Raman, N.; Raja, S.J.; Joseph, J.; Raja, J.D. Synthesis, spectral characteriza-
1
tosensitizers: Quantum yield of O2 generation and its promising role in
anti-tumor activity. Spectrochim. Acta A. 2013, 101, 132–139. (f) Laila,
H.; Abdel-Rahman, R.M.; El-Khatib, L.A.E.; Nassr, A.M. Abu-Dief, Syn-
thesis, physicochemical studies, embryos toxicity and DNA interaction of
some new Iron(II) Schiff base amino acid complexes. J. Mol. Struct. 2013,
tion and DNA cleavage study of heterocyclic Schiff base metal complexes.
J. Chil. Chem. Soc. 2007, 52, 1138–1144.
26. Abdel Aziz, A.A.; Salem, A.M.; Sayed, M.A.; Aboaly, M.M. Synthesis,
structural characterization, thermal studies, catalytic efficiency and antimi-
crobial activity of some M(II) complexes with ONO tridentate schiff base N-
salicylidene-o-aminophenol (saphH2). J. Mol. Struct. 2012, 1010, 130–138.
27. Abdel Aziz, A.A.; Badr, I.H.A.; El-Sayed, I.S.A. Synthesis, spectroscopic,
photoluminescence properties and biological evaluation of novel Zn(II) and
Al(III) complexes of NOON tetradentate Schiff bases. Spectrochim. Acta
A. 2012, 97, 388–396.
1
040, 9–18. (g) Khandani, M.; Sedaghat, T.; Erfani, N.; Haghshenas, M.R.;
Khavasi, H.R. Synthesis, spectroscopic characterization, structural studies
and antibacterial and antitumor activities of diorganotin complexes with
3
-methoxysalicylaldehyde thiosemicarbazone. J. Mol. Struct. 2013, 1037,
1
36–143.