M. R. Maurya, S. Agarwal, C. Bader, D. Rehder
FULL PAPER
[4]
A. Butler, Coord. Chem. Rev. 1999, 187, 17Ϫ25.
946 (VϭO), 894 (OϪO), 707 [V(O2) antisym.], 574 [V(O2) sym.]
[5] [5a]
cmϪ1
.
M. Weyand, H.-J. Hecht, M. Kieß, M.-F. Liaud, H. Vilter,
[5b]
D. Schomburg, J. Mol. Biol. 1999, 293, 595Ϫ611.
M. I.
K[VO(O2)(pydx-bhz)]·H2O (10). Method 1: A 30% aqueous solu-
tion of H2O2 (2 mL, 17.6 mmol) was added to an aqueous solution
of KVO3 (2 mmol), prepared as outlined above. The potassium salt
of H2pydx-bhz was prepared separately by treating III (0.570 g,
2 mmol) with KOH (0.168 g, 3 mmol) in water (10 mL) followed
by filtration. This solution was added dropwise to the above solu-
tion with constant stirring. After 2 h of stirring, the orange solid
that had precipitated was filtered, washed with water and dried.
The crude mass was recrystallised from methanol. Yield 0.14 g
(16%). Method 2: This method parallels the one adopted for 9,
using 8 and H2O2. Yield 0.48 g (22%). C15H15KN3O7V (439.3):
calcd. 41.01, H 3.44, N 9.56; found C 40.87, H 3.41, N 9.45. IR
(KBr): ν˜max. ϭ 1596 (CϭN), 1246 (CϪO, enolate), 1033 (NϪN),
970 (VϭO), 917 (OϪO), 717 [V(O)2 antisym.], 553 [V(O)2 sym.]
Isupov, A. R. Dalby, A. A. Brindley, Y. Izumi, T. Tanabe, G.
N. Murshudov, J. A. Littlechild, J. Mol. Biol. 2000, 299,
1035Ϫ1049. [5c] A. Messerschmidt, R. Wever, Proc. Natl. Acad.
Sci. U. S. A. 1996, 93, 392Ϫ396.
[6] [6a]
G. J. Colpas, B. J. Hamstra, J. W. Kampf, V. L. Pecoraro, J.
[6b]
Am. Chem. Soc. 1996, 118, 3469Ϫ3478.
B. J. Hamstra, G.
J. Colpas, V. L. Pecoraro, Inorg. Chem. 1998, 37, 949Ϫ955.
H. B. ten Brink, H. E. Schoemaker, R. Wever, Eur. J. Biochem.
2001, 268, 132Ϫ138.
[7]
[8] [8a]
C. Bolm, F. Bienewald, Angew. Chem. Int. Ed. Engl. 1996,
34, 2640Ϫ2642. [8b] G. Santoni, G. M. Licini, D. Rehder, Chem.
[8c]
Eur. J. 2003, 9, 4700Ϫ4708.
T. S. Smith II, V. L. Pecoraro,
Inorg. Chem. 2002, 41, 6750Ϫ6760.
[9] [9a]
K. Kimplin, X. Bu, A. Butler, Inorg. Chem. 2002, 41,
[9b]
ˇ
161Ϫ163.
921Ϫ922.
M. Casny´, D. Rehder, Chem. Commun. 2001,
cmϪ1 51V NMR ([D6]DMSO): δ ϭ Ϫ536.0 ppm.
.
[10]
A. Messerschmidt, L. Prade, R. Wever, Biol. Chem. 1997,
378, 309Ϫ315.
Reactions of 9 and 10 with PPh3: PPh3 (0.39 g, 1.5 mmol) was added
to complex 9 or 10 (1 mmol), dissolved in dry methanol (20 mL),
and the reaction mixture heated under reflux for 8 h. After re-
duction of the volume to ca. 10 mL, the solution was kept at 10
°C to yield a yellow precipitate. This was filtered, washed with
methanol and dried in vacuo. Yield ca. 50%. The analytical and
spectroscopic data of the complexes thus obtained match well with
those of 6 and 8, respectively. The formation of OPPh3 was docu-
mented by 31P NMR spectroscopy.
[11] [11a]
M. R. Maurya, S. Khurana, C. Schulzke, D. Rehder, Eur.
[11b]
J. Inorg. Chem. 2001, 779Ϫ787.
M. R. Maurya, S. Khur-
ana, W. Zhang, D. Rehder, J. Chem. Soc., Dalton Trans. 2002,
[11c]
3015Ϫ3023.
M. R. Maurya, S. Khurana, W. Zhang, D.
Rehder, Eur. J. Inorg. Chem. 2002, 1749Ϫ1760.
M. R. Maurya, S. Khurana, D. Rehder, Trans. Met. Chem.
2003, 28, 511Ϫ517.
W. Plass, Coord. Chem. Rev. 2003, 237, 205Ϫ212.
C. C. Lee, A. Syamal, L. J. Theriot, Inorg. Chem. 1971, 10,
1669Ϫ1672.
[12]
[13]
[14]
Catalytic Oxidative Bromination of Salicylaldehyde: In a typical re-
action, salicylaldehyde (0.244 g, 2 mmol) was added to an aqueous
solution of KBr (0.5 g, 4 mmol, in 4 mL H2O), followed by ad-
dition of aqueous 30% H2O2 (1.93 g, 15 mmol). This mixture was
treated whilst stirring with the catalyst (0.02 g) and 70% HClO4
(1 mmol). Addiditional 1-mmol portions of HClO4 were added
during the course of the reaction every hour. After 4 h of reaction
time, the white precipitate that had formed was filtered off, washed
with water followed by diethyl ether, and dried. The crude mass was
dissolved in CH2Cl2, and insoluble material, if any, was removed by
filtration. The filtrate was concentrated to ca. 5 mL and chromato-
graphed on silica gel (column dimensions 30 ϫ 2.5 cm) with
CH2Cl2 as eluant. The first fraction was collected and the solvents
were evaporated to dryness to give 5-bromosalicylaldehyde.
Alternatively, the filtered dichloromethane solution of the crude
material was analysed by GC-MS.
[15] [15a]
C. J. Carrano, C. M. Nun, R. Quan, J. A. Bonadies, V. L.
[15b]
Pecoraro, Inorg. Chem. 1990, 29, 944Ϫ951.
Weyhermüller, K. Wieghardt, B. Nuber, Inorg. Chim. Acta
1995, 240, 217Ϫ229.
Vieira, L. Vilas-Boas, P. O’Brien, P. Thornton, J. Chem. Soc.,
Dalton Trans. 1992, 1745Ϫ1749.
Chakravorty, Inorg. Chem. 1997, 36, 59Ϫ63.
D. Schulz, T.
[15c]
J. Costa Pessoa, J. A. L. Silva, A. L.
[15d]
S. Mondal, P. Ghosh, A.
[15e]
C. Grüning,
H. Schmidt, D. Rehder, Inorg. Chem. Commun. 1999, 2, 57Ϫ59.
N. Julien-Cailhol, E. Rose, J. Vaisserman, D. Rehder, J. Chem.
Soc., Dalton Trans. 1996, 2111Ϫ2121.
[16]
[17] [17a]
A. J. Tasiopoulos, A. N. Troganis, A. Evangelou, C. P.
Raptopoulos, A. Terzis, Y. Deligiannakis, T. A. Kabanos,
Chem. Eur. J. 1999, 910Ϫ921. [17b] T. S. Smith II, R. LoBrutto,
V. L. Pecoraro, Coord. Chem. Rev. 2002, 228, 1Ϫ18.
[18]
´
´
K. Elvingson, A. Gonzales-Baro, L. Pettersson, Inorg. Chem.
1996, 35, 3388Ϫ3393.
[19] [19a]
C. R. Cornman, K. M. Geiser-Bush, S. P. Rowley, P. D.
Boyle, Inorg. Chem. 1997, 36, 6401Ϫ6408.
[19b]
G. Santoni, G.
Licini, D. Rehder, Chem. Eur. J. 2003, 9, 4700Ϫ4708.
S. P. Perlepes, D. Nicholls, M. R. Harison, Inorg. Chim. Acta
1985, 102, 137Ϫ143.
Acknowledgments
[20]
We acknowledge the performance of the microanalyses by the Re-
gional Sophisticated Instrumental Centre, CDRI, Lucknow, and
financial assistance from the Department of Science and Technol-
ogy, Government of India (Grant No. SP/S1/F-07/2001), New
Delhi, and the Deutsche Forschungsgemeinschaft (grant RE 431/
13-4).
[21] [21a]
A. D. Westland, F. Haque, J.-M. Bouchard, Inorg. Chem.
1980, 19, 2255Ϫ2259. [21b] M. Casny, D. Rehder, Dalton Trans.
ˇ
´
[21c]
´ ´
M. Sivak, M. Mad’orova, J. Taatiersky, J.
2004, 839Ϫ846.
Marek, Eur. J. Inorg. Chem. 2003, 2075Ϫ2081.
A. T. T. Hsieh, R. M. Sheahan, B. O. West, Aust. J. Chem.
1975, 28, 885Ϫ891.
[22]
[23] [23a]
D. Rehder, C. Weidemann, A. Duch, W. Priebsch, Inorg.
[23b]
Chem. 1988, 27, 584Ϫ587.
D. Rehder, Transition Metal
Nuclear Magnetic Resonance (Ed.: P. S. Pregosin), Elsevier,
New York 1991, pp. 1Ϫ58.
O. W. Howarth, Progr. Magn. Reson. Spetrosc. 1990, 22,
453Ϫ485.
I. Andersson, S. Angus-Dunne, O. Howarth, L. Pettersson, J.
Inorg. Biochem. 2000, 80, 51Ϫ58.
W. Plass, A. Pohlmann, H.-K. Yozgatli, J. Inorg. Biochem.
2000, 80, 181Ϫ183.
[1]
M. R. Maurya, Coord. Chem. Rev. 2003, 237, 163Ϫ181.
[2]
D. Rehder, Inorg. Chem. Commun. 2003, 6, 604Ϫ617.
[24]
[25]
[26]
[27]
[3]
[3a] K. H. Thompson, J. H. McNeill, C. Orvig, Chem. Rev. 1999,
[3b]
99, 2561Ϫ2571.
H. Sakurai, Y. Kojima, Y. Yoshikawa, K.
[3c]
Kawabe, H. Yasui, Coord. Chem. Rev. 2002, 226, 187Ϫ198.
D. Rehder, J. Costa Pessoa, C. F. G. C. Geraldes, M. M. C. A.
Castro, T. Kabanos, T. Kiss, B. Meier, G. Micera, L. Pettersson,
M. Rangel, A. Salifoglou, I. Turel, D. Wang, J. Biol. Inorg.
Chem. 2002, 7, 384Ϫ396.
G. J. Colpas, B. J. Hamstra, J. W. Kampf, V. L. Pecoraro, Inorg.
156
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 147Ϫ157