4
Tetrahedron
Supplementary Material
(d) Trofimov, B. A.; Andriyankova, L. V.; Belyaeva, K. V.;
Mal’kina, A. G.; Nikitina, L. P.; Afonin, A. V.; Ushakov, I. A.
Eur. J. Org. Chem. 2010, 1772-1777. (e) Cruz-Acosta, F.; de
Armas, P.; García-Tellado, F. Synlett 2010, 2421-2424.
Experimental procedures, compound characterization data,
13
H-, C-NMR spectra, and crystallization data (cif file) can be
1
found in the online version of this article at doi:
1
0.1016/j.tetlet.xxxx.xx.xxx.
References and notes
1
.
(a) Progress in Heterocyclic Chemistry; Gribble, G. W.; Joule, J.
A., Eds; Elsevier; Oxford, 2014; Vol. 26. (b) Vitaku, E.; Smith,
D. T.; Njardarson, J. T. J. Med. Chem. 2014, doi:
1
0.1021/jm501100b. (c) Ritchie, T. J.; Macdonald, S. J. F.; Peace,
S.; Pickett, S. D.; Luscombe, C. N. Med. Chem. Commun. 2012, 3,
062-1069.
(a) Parameswarappa, S. G.; Pigge, F. C. Org. Lett. 2010, 12, 3434-
1
2
.
3
437. (b) Parameswarappa, S. G.; Pigge, F. C. Tetrahedron Lett.
011, 52, 4357-4359.
2
3
4
.
.
Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem.
Rev. 2012, 112, 2642-2713.
(a) Parameswarappa, S. G.; Pigge, F. C. J. Org. Chem. 2012, 77,
8
038-8048. (b) Pawar, L.; Pigge, F. C. Tetrahedron Lett. 2013,
4, 6067-6070. (c) Lansakara, A. I.; Farrell, D. P.; Pigge, F. C.
Org. Biomol. Chem. 2014, 12, 1090-1099.
5
5
6
.
.
Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991-9016.
(a) Trofimov, B. A.; Andriyankova, L. V.; Nikitina, L. P.;
Belyaeva, K. V.; Mal’kina, A. G.; Afonin, A. V.; Ushakov, I. A.
Tetrahedron Lett. 2013, 54, 4693-4696. (b) Zificsak, C. A.;
Hlasta, D. J. Tetrahedron Lett. 2005, 46, 4789-4792. (c) Deng,
Y.; Hlasta, D. J. Tetrahedron Lett. 2002, 43, 189-192. (d)
Gallagher, T. F.; Adams, J. L. Tetrahedron Lett. 1989, 30, 6599-
6
602.
7
8
.
.
(a) Knappke, C. E. I.; Arduengo, III, A. J.; Jiao, H.; Neudörfl, J.-
M.; von Wangelin, A. J. Synthesis 2011, 3784-3795. (b) Knappke,
C. E. I.; Neudörfl, J.-M.; von Wangelin, A. J. Org. Biomol. Chem.
2
010, 8, 1695-1705.
(a) Kronig, S.; Jones, P. G.; Tamm, M. Eur. J. Inorg. Chem. 2013,
301-2314. (b) Song, G.; Li, X.; Song, Z.; Zhao, J.; Zhang, H.
2
Chem. – Eur. J. 2009, 15, 5535-5544. (c) Fürstner, A.; Alcarazo,
M.; Goddard, R.; Lehmann, C. W. Angew. Chem. Int. Ed. 2008,
4
7, 3210-3214. (d) Viciano, M.; Feliz, M.; Corberán, R.; Mata, J.
A.; Clot, E.; Peris, E. Organometallics 2007, 26, 5304-5314. (e)
Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J.
Chem. Soc., Chem. Commun. 1993, 1136-1137.
9
1
1
1
1
1
1
.
DiRocco, D. A.; Oberg, K. M.; Rovis, T. J. Am. Chem. Soc. 2012,
1
34, 6143-6145.
0. Boiani, M.; González, M. Mini-Rev. Med. Chem. 2005, 5, 409-
24.
4
1. A UV active PMB protecting group was employed to aid TLC
analysis of reaction mixtures.
2. Diastereomeric ratio was estimated based on relative integration of
1
singlets corresponding to H
a
in the H-NMR spectrum.
3. This structure has been deposited with the Cambridge Structural
Database. CCDC No. 1035872
4. Liu, B. K.; Wu, Q.; Qian, X. Q.; Lv, D. S.; Lin, X. F. Synthesis
2
5. The structure of 13 was assigned on the basis of H-, C-NMR
007, 2653-2659.
1
13
1
and HRMS. Impurities appearing in the aliphatic region of the H-
NMR spectrum are attributed to the presence of (BOC) O in the
reaction. Numerous attempts to obtain a homogeneous sample by
2
repeated column chromatography and distillation were
i
CCl and Pr
unsuccessful. Interestingly, using EtO
(
2
2
NEt in place of
BOC) O led to formation of I in low yield.
2
N
N
CO2Et
EtO2CCl
iPr2NEt
12
DCE, reflux
I (24%)
1
1
2
6. (BOC) O alone may be sufficient to mediate the cyclizations
illustrated in Schemes 2-4 as well, but this was not attempted.
7. For related intermolecular transformations, see reference 6b,c and:
(
a) Zhao, Y.; Lei, M.; Yang, L.; Han, F.; Li, Z.; Xia, C. Org.
Biomol. Chem. 2012, 10, 8956-8959. (b) Joyce, E.; McArdle, P.;
Aldabbagh, F. Synlett 2011, 1097-1100. (c) Shen, Y.; Cai, S.; He,
C.; Lin, X.; Lu, P.; Wang, Y. Tetrahedron 2011, 67, 8338-8342.