A R T I C L E
N
A
T
U
R
E
C
O
M
M
U
N
I
C
A
T
I
O
N
S
|
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
1
0
3
8
/
s
4
1
4
6
7
-
0
1
9
-
1
1
5
0
9
-
x
7. Pollegioni, L. & Molla, G. C-N oxidation with amine oxidases and amino acid
oxidases, in Science of Synthesis, Biocatalysis in Organic Synthesis 3 (eds. Faber,
K., Fessner, W.-D. & Turner, N. J.) 235–284 (Georg Thieme Verlag KG,
Stuttgart, 2015).
33. Chen, F.-F. et al. Reshaping the active pocket of amine dehydrogenases for
asymmetric synthesis of bulky aliphatic amines. ACS Catal. 8, 2622–2628
(2018).
34. Heydari, M., Ohshima, T., Nunoura-Kominato, N. & Sakuraba, H. Highly
stable l-lysine 6-dehydrogenase from the thermophile Geobacillus
stearothermophilus isolated from a Japanese hot spring: characterization, gene
cloning and sequencing, and expression. Appl. Environ. Microbiol. 2004,
937–942 (2004).
35. Knaus, T., Cariati, L., Masman, M. F. & Mutti, F. G. In vitro biocatalytic
pathway design: orthogonal network for the quantitative and stereospecific
amination of alcohols. Org. Biomol. Chem. 15, 8313–8325 (2017).
36. Rowland, R. S. & Taylor, R. Intermolecular nonbonded contact distances in
organic crystal structures: comparison with distances expected from van der
Waals radii. J. Phys. Chem. 100, 7384–7391 (1996).
37. Au, S. K., Bommarius, B. R. & Bommarius, A. S. Biphasic reaction system
allows for conversion of hydrophobic substrates by amine dehydrogenases.
ACS Catal. 4, 4021–4026 (2014).
38. Lowe, J., Ingram, A. A. & Groger, H. Enantioselective synthesis of amines via
reductive amination with a dehydrogenase mutant from Exigobacterium
sibiricum: Substrate scope, co-solvent tolerance and biocatalyst
immobilization. Bioorg. Med. Chem. 26, 1387–1392 (2018).
39. Shin, J.-S. & Kim, B.-G. Asymmetric synthesis of chiral amines with ω-
transaminase. Biotechnol. Bioeng. 65, 206–211 (1999).
40. Truppo, M. D., Rozzell, J. D. & Turner, N. J. Efficient production of
enantiomerically pure chiral amines at concentrations of 50 g/L using
transaminases. Org. Process Res. Dev. 14, 234–237 (2010).
8. Bartsch, S. & Vogel, A. Addition of ammonia and amines to C=C bonds, in
Science of Synthesis, Biocatalysis in Organic Synthesis 2 (eds. Faber, K., Fessner,
W.-D. & Turner, N. J.) 291–311 (Georg Thieme Verlag KG, Stuttgart, 2015).
9. Li, R. F. et al. Computational redesign of enzymes for regio- and
enantioselective hydroamination. Nat. Chem. Biol. 14, 664–670 (2018).
10. Ilari, A., Bonamore, A. & Boffi, A. Addition to C=N bonds. in Science of
Synthesis, Biocatalysis in Organic Synthesis 2 (eds. Faber, K., Fessner, W.-D. &
Turner, N. J.) 159–175 (Georg Thieme Verlag KG, Stuttgart, 2015).
11. Lichman, B. R., Zhao, J. X., Hailes, H. C. & Ward, J. M. Enzyme catalysed
Pictet-Spengler formation of chiral 1,1 ‘-disubstituted- and spiro-
tetrahydroisoquinolines. Nat. Commun. 8, 14883 (2017).
12. Schrittwieser, J. H. et al. Deracemization by simultaneous bio-oxidative
kinetic resolution and stereoinversion. Angew. Chem. Int. Ed. 53, 3731–3734
(2014).
13. Schrittwieser, J. H. et al. Biocatalytic enantioselective oxidative C-C coupling
by aerobic C-H activation. Angew. Chem. Int. Ed. 50, 1068–1071 (2011).
14. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H.
Enantioselective, intermolecular benzylic C-H amination catalysed by an
engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).
15. Reznichenko, A. L., Nawara-Hultzsch, A. J. & Hultzsch, K. Asymmetric
hydroamination, in Stereoselective Formation of Amines (eds. Li, W. & Zhang, X.)
191–260 (Springer, Berlin, 2014).
16. Slabu, I., Galman, J. L., Lloyd, R. C. & Turner, N. J. Discovery, engineering,
and synthetic application of transaminase biocatalysts. ACS Catal. 7,
8263–8284 (2017).
17. Sharma, M., Mangas-Sanchez, J., Turner, N. J. & Grogan, G. NAD(P)H-
dependent dehydrogenases for the asymmetric reductive amination of
ketones: structure, mechanism, evolution and application. Adv. Synth. Catal.
359, 2011–2025 (2017).
41. Fox, R. J. & Clay, M. D. Catalytic effectiveness, a measure of enzyme
proficiency for industrial applications. Trends Biotechnol. 27, 137–140 (2009).
42. Eisenthal, R., Danson, M. J. & Hough, D. W. Catalytic efficiency and kcat/KM:
a useful comparator? Trends Biotechnol. 25, 247–249 (2007).
43. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and
Steady-State Enzyme Systems. 10 (Wiley, New York, 1993).
44. Pompeu, Y. A., Sullivan, B. & Stewart, J. D. X-ray crystallography reveals how
subtle changes control the orientation of substrate binding in an alkene
reductase. ACS Catal. 3, 2376–2390 (2013).
18. Aleku, G. A. et al. A reductive aminase from Aspergillus oryzae. Nat. Chem. 9,
961–969 (2017).
19. Tseliou, V., Masman, M. F., Böhmer, W., Knaus, T. & Mutti, F. G. Mechanistic
insight into the catalytic promiscuity of amine dehydrogenases: asymmetric
synthesis of secondary and primary amines. ChemBioChem 20, 800–812
(2019).
20. Fuchs, M., Farnberger, J. E. & Kroutil, W. The industrial age of biocatalytic
transamination. Eur. J. Org. Chem. 2015, 6965–6982 (2015).
21. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines
from ketones applied to sitagliptin manufacture. Science 329, 305–309
(2010).
45. Parales, R. E. et al. Regioselectivity and enantioselectivity of naphthalene
dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352
in the a subunit. J. Bacteriol. 182, 5495–5504 (2000).
46. Magnusson, A. O., Takwa, M., Hamberg, A. & Hult, K. An S-selective lipase
was created by rational redesign and the enantioselectivity increased with
temperature. Angew. Chem. Int. Ed. 44, 4582–4585 (2005).
47. Svedendahl, M., Branneby, C., Lindberg, L. & Berglund, P. Reversed
enantiopreference of an ω-transaminase by a single-point mutation.
ChemCatChem 2, 976–980 (2010).
22. Mutti, F. G., Sattler, J., Tauber, K. & Kroutil, W. Creating a biocatalyst for the
production of an optically pure sterically hindered amine. ChemCatChem 3,
109–111 (2011).
23. Knaus, T., Böhmer, W. & Mutti, F. G. Amine dehydrogenases: efficient
biocatalysts for the reductive amination of carbonyl compounds. Green. Chem.
19, 453–463 (2017).
24. Itoh, N., Yachi, C. & Kudome, T. Determining a novel NADq-dependent
amine dehydrogenase with a broad substrate range from Streptomyces
virginiae IFO 12827: purification and characterization. J. Mol. Cat. B 10,
281–290 (2000).
48. Pratter, S. M. et al. Inversion of enantioselectivity of a mononuclear non-heme
iron(II)-dependent hydroxylase by tuning the interplay of metal-center
geometry and protein structure. Angew. Chem. Int. Ed. 52, 9677–9681
(2013).
49. Sun, Z. et al. Reshaping an enzyme binding pocket for enhanced and inverted
stereoselectivity: use of smallest amino acid alphabets in directed evolution.
Angew. Chem. Int. Ed. 54, 12410–12415 (2015).
50. Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific source
of catalysts for asymmetric reactions. Angew. Chem. Int. Ed. 50, 138–174
(2011).
25. Mayol, O. et al. Asymmetric reductive amination by a wild-type amine
dehydrogenase from the thermophilic bacteria Petrotoga mobilis. Catal. Sci.
Technol. 6, 7421–7428 (2016).
51. Jongejan, J. A. Effects of organic solvents on enzyme selectivity, in Organic
Synthesis with Enzymes in Non-Aqueous Media (eds. Giacomo, C. & Sergio, R.)
25-46 (Wiley, New York, 2008).
26. Mayol, O. et al. A family of native amine dehydrogenases for the asymmetric
reductive amination of ketones. Nat. Catal. 2, 324–333 (2019).
27. Abrahamson, M. J., Vazquez-Figueroa, E., Woodall, N. B., Moore, J. C. &
Bommarius, A. S. Development of an amine dehydrogenase for synthesis of
chiral amines. Angew. Chem. Int. Ed. 51, 3969–3972 (2012).
28. Abrahamson, M. J., Wong, J. W. & Bommarius, A. S. The evolution of an
amine dehydrogenase biocatalyst for the asymmetric production of chiral
amines. Adv. Synth. Catal. 355, 1780–1786 (2013).
29. Ye, L. J. et al. Engineering of amine dehydrogenase for asymmetric reductive
amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase.
ACS Catal. 5, 1119–1122 (2015).
30. Chen, F.-F., Liu, Y.-Y., Zheng, G.-W. & Xu, J.-H. Asymmetric amination of
secondary alcohols by using a redox-neutral two-enzyme cascade.
ChemCatChem 7, 3838–3841 (2015).
52. Krieger, E., Koraimann, G. & Vriend, G. Increasing the precision of
comparative models with YASARA NOVA–a self-parameterizing force field.
Proteins 47, 393–402 (2002).
53. Oostenbrink, C., Villa, A., Mark, A. E. & van Gunsteren, W. F. A biomolecular
force field based on the free enthalpy of hydration and solvation: the
GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25,
1656–1676 (2004).
54. Venselaar, H. et al. Homology modelling and spectroscopy, a never-ending
love story. Eur. Biophys. J. 39, 551–563 (2010).
55. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and
multithreading. J. Comput. Chem. 31, 455–461 (2010).
56. Bondi, A. van der Waals Volumes and radii of metals in covalent compounds.
J. Phys. Chem. 70, 3006–3007 (1966).
31. Pushpanath, A., Siirola, E., Bornadel, A., Woodlock, D. & Schell, U.
Understanding and Overcoming the limitations of Bacillus badius and
Caldalkalibacillus thermarum amine dehydrogenases for biocatalytic reductive
amination. ACS Catal. 7, 3204–3209 (2017).
32. Bommarius, B. R., Schürmann, M. & Bommarius, A. S. A novel chimeric
amine dehydrogenase shows altered substrate specificity compared to its
parent enzymes. Chem. Commun. 50, 14953–14955 (2014).
Acknowledgements
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 Research and Innovation programme (ERC-StG, Grant
Agreement No. 638271, BioSusAmin). Dutch funding from the NWO Sector Plan for
Physics and Chemistry is also acknowledged.
10
N A T UR E C O M M U N I C A TI O N S |