Chemistry Letters Vol.34, No.11 (2005)
1493
Fe3+
EWG
Table 2. Stereoselective synthesis of trisubstituted alkenes
containing a benzyl substituent 3 and 4 from the adducts 1 and
2
Fe2+
+
+
Fe2+
EWG
H
HO:
HO
HO
EWG
_
EWG
R
and benzene using Fe3 -K-10 clay
þ
a
R
R
-H+
_
-H
2
O
R
-
Fe3+
H
+
Time Isolated
min yield/%
Entry
R
EWG
E:Z
A
/
3
a
2-Cl-C6H4
C6H5
4-Cl-C6H4
4-Me-C6H4 COOMe
1-Napth
i-C3H7
COOMe
COOMe
COOMe
30
30
30
30
30
95
93
91
90
74
62
56
92
89
86
87
90
41
52
98:2
96:4
98:2
97:3
Figure 1.
3b
3
c
−
−
−
R
H
H
R
H
R
3d
EWG
COOMe
C
N
3
3
3
4
e
f
g
a
COOMe
COOMe 120
COOMe 120
CN
CN
CN
CN
CN
CN
CN
95:5
Ar
Ar
Ar
Fe2+
HO
+
Fe2+
HO
Fe2+
30:70
42:58
0:100
1:99
0:100
0:100
0:100
0:100
0:100
HO
+
+
i-C4H9
Figure 2.
2-Cl-C6H4
C6H5
4-Cl-C6H4
4-Me-C6H4
4-MeO-C6H4
n-C3H7
30
30
30
30
30
120
120
4b
alkenes containing a benzyl substituent by utilizing the Frie-
del–Craft reaction of aromatic compounds with the unactivated
4
c
4d
3þ
Baylis-Hillmam adducts using Fe -K-10 montmorillonite clay
10
4
4
e
f
(
prepared from FeCl3 and K-10 clay).
The operational simplicity, the application of a heterogene-
4g
i-C3H7
ous and recyclable catalyst, high yield, and excellent stereose-
lectivity of the products (particularly from the adducts contain-
ing aryl substituents) are the great advantages of the present
method.
a
The structures of the alkenes were determined from their spec-
tral (IR, H and C NMR, and MS) and analytical data.
1
13
Table 3. Friedel–Craft reaction of the Baylis–Hillman adducts
with different arenes using Fe -K-10 clay under reflux for
3þ
The authors thank UGC and CSIR, New Delhi for financial
assistance.
30 min
a
Isolated
yield/%
Entry
Substrate
Arene
Product
References and Notes
1
COOMe
OH
Part 62 in the series, ‘‘Studies on novel synthetic methodolo-
gies,’’ IICT Comunication No. 050821.
a) A. B. Baylis and M. E. D. Hillman, German Patent 2155113
9
2
COOMe
1
2
PhCH
PhCH
3
Me
o:p = 45:55
2
COOMe
OH
(
1972); Chem. Abstr., 77, 34174q (1972). b) D. Basavaiah,
A. J. Rao, and T. Satyanarayana, Chem. Rev., 103, 811
2003), and references cited therein.
9
1
COOMe
3
Cl
Cl
Cl
Me
o:p = 34:66
(
COOMe
OH
84
3
4
a) H. M. R. Hoffmann and J. Rabe, Angew. Chem., Int. Ed.
Engl., 24, 94 (1985). b) R. Buchholz and H. M. R. Hoffmann,
Helv. Chim. Acta, 74, 1213 (1991). c) D. Basavaiah, M.
Bakthadoss, and S. Pandiaraju, J. Chem. Soc., Chem. Com-
mun., 1998, 1639.
a) B. Das, J. Banerjee, N. Ravindranath, and B. Venkataiah,
Tetrahedron Lett., 45, 2425 (2004). b) B. Das, J. Banerjee,
and N. Ravindranath, Tetrahedron, 60, 8357 (2004). c) B.
Das, J. Banerjee, G. Mahender, and A. Majhi, Org. Lett.,
6, 3349 (2004). d) B. Das, J. Banerjee, A. Majhi, and G.
Mahender, Tetrahedron Lett., 45, 9225 (2004). e) B. Das, G.
Mahender, N. Chowdhury, and J. Banerjee, Synlett, 2005,
COOMe
3
4
5
6
PhCl
Cl
Cl
o:p = 42:58
OH
CN
89
PhCH
PhCH
PhCl
3
3
Me
CN
o:p = 43:57
OH
CN
91
Me
Cl
CN
Cl
Cl
o:p = 35:65
OH
CN
8
7
CN
o:p = 37:63
Cl
Cl
a
alkene (for the Entries 1–3) with opposite stereochemistry was
obtained in trace quantity (2–4%).
1
000.
D. Basavaiah and R. M. Reddy, Tetrahedron Lett., 42, 3025
2001), and references cited therein.
M. Takasuji, M. Aneta, T. Masamune, A. Shirata, and K.
Takahashi, Chem. Lett., 1980, 339.
a) D. Basavaiah, M. Krishnamacharyulu, R. S. Hyma, and
S. Pandiaraju, Tetrahedron Lett., 38, 2141 (1997). b) D.
Basavaiah, S. Pandiaraju, and K. Padmaja, Synlett, 1996,
393. c) H. J. Lee, M. R. Seong, and J. N. Kim, Tetrahedron
Lett., 39, 6223 (1998).
plained7c by considering the plausible mechanism (Figure 1) and
transition state models A, B, and C (Figure 2). Model A is more
favoured than B when EWG = –COOMe and R = aryl and (E)-
products are thus formed from 1. However, when R = alkyl, due
5
6
7
(
7
c
to the steric strain between –CH2- of the benzyl group and R,
possibly both the transition states A and B operated to afford the
mixture of (E)- and (Z)-products. On the other hand, model C is
more favoured than A when EWG = –CN (as –CN is linear) and
hence (Z)-products are formed from 2.
The present methodology was extended to the Friedel–Craft
reaction of other aromatic compounds with the Baylis–Hillman
adducts (Table 3). The trisubstituted alkenes were obtained in
high yields and in excellent stereoselectivity.
8
9
B. M. Choudary, N. S. Chowdari, and M. L. Kantam, Tetra-
hedron, 56, 7291 (2000).
a) G. W. Kabalka, B. Venkataiah, and G. Dong, Org. Lett., 5,
3803 (2003). b) L. Navarre, S. Darses, and J. P. Gnet, J. Chem.
Soc., Chem. Commun., 2004, 1108.
1
0 a) P. Laszlo and A. Mathy, Helv. Chim. Acta, 70, 557 (1987).
b) K. V. N. S. Srinivas and B. Das, J. Org. Chem., 68, 1165
(2003).
In conclusion, we have developed a convenient one-pot gen-
eral methodology for stereoselective synthesis of trisubstituted
Published on the web (Advance View) October 1, 2005; DOI 10.1246/cl.2005.1492