PAPER
Synthesis of Arylcalcium Halides
729
1
Table 3 Experimental Details for the Direct Synthesis of Arylcalcium Halides Aryl-Ca(THF) X and THF Content n and H NMR Data
n
1
Compound
Amount of Ca
Amount of Aryl-X
5.73 g/28.1 mmol
1.08 g/6.86 mmol
2.60 g/11.9 mmol
4.69 g/14.2 mmol
5.95 g/25.0 mmol
4.51 g/20.3 mmol
3.15 g/13.5 mmol
3.36 g/13.6 mmol
4.94 g/18.7 mmol
5.64 g/22.2 mmol
n
H NMR (THF-d ), d, J (Hz)
8
1
1
2
3
4
5
6
7
8
2
a
2.25 g/56.1 mmol
0.55 g/13.7 mmol
0.66 g/16.5 mmol
1.14 g/28.4 mmol
2.00 g/49.9 mmol
1.63 g/40.7 mmol
1.08 g/26.9 mmol
1.09 g/27.2 mmol
1.50 g/37.4 mmol
1.78 g/44.4 mmol
4
6.62 (p-H), 6.75 (m-H), 7.60 (o-H)
6.7 (p-H), 6.81 (m-H), 7.80 (o-H)
2.06 (p-Me), 6.60 (m-H), 7.50 (o-H)
b
4
4
3
6
7.12 (m-H), 7.44 (o-H) ( J = 7.4)
3
4
6.78 (m-H), 7.61 (o-H) ( J = 7.6)
6.52 (m-H), 7.57 (o-H) ( J = 7.8)a
3
5
4
3.69 (OMe), 6.45 (m-H), 7.53 (o-H)
5
2.69 [NMe ], 6.41 (m-H), 7.53 (o-H)
2
2.5
4
3.69 (OMe), 6.39 (m-H), 6.91 (p-H)
1
–b
a 3
b 1
3
JH,F = 11.6 Hz, 4JH,F = 8.8 Hz.
3
3
4
3
4
H NMR: d = 7.04 (dd, J = 6.0 Hz, J = 8.0 Hz, 1 H, H-3), 7.12 (dt, J = 1.6 Hz, J = 6.8 Hz, 1 H, H-6 or H-7), 7.16 (dt, J = 1.6 Hz,
3
4
3
3
J = 6.8 Hz, 1 H, H-7 or H-6), 7.28 (d, J = 8.0 Hz, 1 H, H-4), 7.54 (dd, J = 1.6 Hz, J = 7.6 Hz, 1 H, H-5), 7.87 (d, J = 5.2 Hz, 1 H, H-8), 7.94
3
(
d, J = 8.0 Hz, 1 H, H-2).
Crystal Structure Determination of 12
(2) (a) Sapse, A.-M.; Schleyer, P. v. R. Lithium Chemistry: A
Theoretical and Experimental Overview; Wiley: New York,
1995. (b) Wakefield, B. Organolithium Methods; Academic
Press: London, 1988. (c) Schade, C.; Schleyer, P. v. R. Adv.
Organomet. Chem. 1987, 27, 169. (d) Setzer, W. N.;
Schleyer, P. v. R. Adv. Organomet. Chem. 1985, 24, 353.
(3) (a) Garst, J. F.; Soriaga, M. P. Coord. Chem. Rev. 2004, 248,
623. (b) Richey, H. G. Grignard Reagents: New
Developments; Wiley: Chichester, 2000. (c) Wakefield, B.
Organomagnesium Methods in Organic Synthesis;
Academic Press: London, 1995.
Cooling of a solution of 12 in THF to 0 °C led to the formation of
single crystals suitable for an X-ray structure determination. The in-
tensity data for the compounds were collected on a Nonius Kappa
CCD diffractometer using graphite-monochromated Mo-K radia-
tion. Data were corrected for Lorentz, polarization effects and for
a
1
9–21
absorption effects.
The structure was solved by direct methods
22
(
SHELXS) and refined by full-matrix least squares techniques
2
23
against Fo (SHELXL-97). The hydrogen atoms were included at
calculated positions with fixed thermal parameters. Without the dis-
ordered THF molecule all non-hydrogen atoms were refined aniso-
tropically.23 XP (Siemens Analytical X-ray Instruments, Inc.) was
used for structure representations.
(4) Klumberger, O.; Schmidbaur, H. Chem. unserer Zeit 1993,
27, 310.
(
5) (a) Hanusa, T. P. Coord. Chem. Rev. 2000, 210, 329.
(b) Westerhausen, M. Angew. Chem. Int. Ed. 2001, 40, 2975;
Angew. Chem. 2001, 113, 3063. (c) Alexander, J. S.;
Ruhlandt-Senge, K. Eur. J. Inorg. Chem. 2002, 2761.
(d) Westerhausen, M. Angew. Chem. Intl. Ed. 2007, Angew.
Chem. 2007, in press.
2
4
Crystal Data of 12
C H CaIO , M = 582.55
0
–
1
g
mol , colorless prism, size
.09 × 0.09 × 0.04 mm , orthorhombic, space group Pnma,
a = 23.5829(9), b = 13.4343(5), c = 8.7749(2) Å, V = 2780.06(16)
Å , T = –90 °C, Z = 4, r
cm , multiscan, transmin: 0.7456, transmax: 0.9600, F(000) = 1200,
6108 reflections in h(–30/30), k(–17/12), l(–11/9), measured in the
range 2.30° £ Q £ 27.47°, completeness Qmax = 99.5%, 3312 inde-
pendent reflections, Rint = 0.0635, 2284 reflections with F >4s(F ),
58 parameters, 0 restraints, R1obs = 0.0602, wR2obs = 0.1564,
2
6
39
4
3
3
–3
= 1.392 gcm , m (Mo-K ) = 13.63
calcd
a
–
1
(6) (a) Bähr, G.; Kalinowski, H.-O. In Houben-Weyl Methoden
der organischen Chemie, Vol. XIII/2a; Thieme Verlag:
Stuttgart, 1973, 529–551. (b) Gowenlock, B. G.; Lindsell,
W. E. J. Organomet. Chem. Libr. 3, Organomet. Chem. Rev.
1977, 1. (c) Lindsell, W. E. In Comprehensive
1
o
o
1
R1all = 0.0928, wR2all = 0.1777, GOOF = 1.042, largest difference
peak and hole: 1.288/–1.869 e Å .
Organometallic Chemistry - The Synthesis, Reactions and
Structures of Organometallic Compounds, Vol. 1;
–
3
Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon
Press: New York, 1982, Chap. 4.2.4, 237–252.
Acknowledgment
(
7) (a) Jutzi, P. J. Organomet. Chem. 1990, 400, 1. (b) Hanusa,
T. P. Polyhedron 1990, 9, 1345. (c) Hanusa, T. P. Chem.
Rev. 1993, 93, 1023. (d) Burkey, D. J.; Hanusa, T. P.
Comments Inorg. Chem. 1995, 17, 41. (e) Jutzi, P.; Burford,
N. In Metallocenes; Togni, A.; Halterman, R. L., Eds.;
Wiley-VCH: Weinheim, 1998, Chap. 1, 3–54. (f) Hays, M.
L.; Hanusa, T. P. Adv. Organomet. Chem. 1996, 40, 117.
We thank the German Research Foundation (Deutsche Forschungs-
gemeinschaft, DFG) for generous financial support of this research
initiative. M. Gärtner gratefully acknowledges the PhD scholarship
of the Fonds der Chemischen Industrie.
(
(
g) Jutzi, P.; Burford, N. Chem. Rev. 1999, 99, 969.
h) Hanusa, T. P. Organometallics 2002, 21, 2559.
References
(
1) Seyferth, D. Organometallics 2006, 25, 2.
(8) Cloke, F. G. N.; Hitchcock, P. B.; Lappert, M. F.; Lawless,
G. A.; Royo, B. J. Chem. Soc., Chem. Commun. 1991, 724.
Synthesis 2007, No. 5, 725–730 © Thieme Stuttgart · New York