Chemistry Letters Vol.36, No.1 (2007)
83
7
8
J. E. Huheey, Inorganic Chemistry, 3rd ed., Roger and Harper
Row, Singapore, 1990.
was found to occur with high regio- and stereoselectivity. 2-Ar-
ylepoxides and N-tosyl-2-arylaziridines formed the products by
nucleophilic attack of the chloride ion at the benzylic position
while 2-alkylepoxides and N-tosyl-2-alkylaziridines afforded
the products by the attack at the terminal position. Only one
regioisomer was obtained by ring opening of chalcone oxide
(Table 1, Entry b) under the present experimental conditions.
Previously, the same reaction using other catalysts provided both
the regioisomers of the corresponding ꢀ-chlorohydrins.4d,5a
Thus, the present method employing ZrOCl2 is more advanta-
geous to the earlier related methods. However, in the case of
N-tosyl-2-alkylaziridines minor amounts of other regioisomers
were also obtained. The ring opening of bicyclic epoxides and
N-tosyl aziridines yielded the corresponding ꢀ-chlorohydrins
and ꢀ-chloroamines, respectively with trans-configuration. The
structures and stereochemistry of the products were character-
ized from their analytical and spectral (1H NMR and MS) data.10
In conclusion, ZrOCl2 has efficiently been utilized for
the first time for regio- and stereoselective ring opening of
epoxides and aziridines at room temperature to produce the
corresponding 2-chlorohydrins and 2-chloroamines, respectively
in high yields.
b) J. S. Yadav, B. V. S. Reddy, K. S. Roy, K. B. Reddy,
f) B. Das, M. R. Reddy, V. S. Reddy, R. Ramu, Chem. Lett.
a) M. Easwaramurthy, R. Ravikumar, A. J. Lakshmanan, G. J.
Raju, Indian J. Chem., Sect. B 2005, 44, 635. b) T. Yakaiah,
G. V. Reddy, B. P. V. Lingaiah, P. S. Rao, B. Narsaiah, Indian
J. Chem., Sect. B 2005, 44, 1301. c) R. Ghosh, S. Maiti, A.
9
10 General experimental procedure: To a solution of an epoxide
or N-tosylaziridine (1 mmol) in MeCN (5 mL) ZrOCl2 (1.2
mmol) was added and the mixture was stirred at room temper-
ature. After completion of the reaction (TLC) the mixture was
diluted with EtOAc (10 mL) followed by washing with brine
(20 mL) and water (2 ꢁ 10 mL). The organic portion was dried
and concentrated. The crude material was purified by column
chromatography (silica gel, hexane–EtOAc) to furnish pure
ꢀ-chlorohydrin or N-tosyl-ꢀ-chloroamine. The spectral (IR,
1H NMR and MS) and analytical data of some representative
products are given below.
Product 2a: 1H NMR (CDCl3, 200 MHz): ꢁ 7.40–7.28 (5H, m),
4.89 (1H, t, J ¼ 7:0 Hz), 3.88–3.76 (2H, m), 2.83 (1H, brs);
The authors thank CSIR and UGC, New Delhi for financial
assistance.
ꢂ
FABMS: m=z 159, 157 [M + H]þ ; Anal. Calcd for C8H9ClO:
C, 61.34; H, 5.75%. Found: C, 61.46; H, 5.64%.
References and Notes
1
Product 2g: 1H NMR (CDCl3; 200 MHz): ꢁ 7.09 (2H, d,
J ¼ 8:0 Hz), 6.80 (2H, d, J ¼ 8:0 Hz), 4.12 (1H, m), 4.05–
3.98 (2H, m), 3.79–3.62 (2H, m), 3.51 (2H, t, J ¼ 7:0 Hz),
3.31 (3H, s), 2.75 (2H, t, J ¼ 7:0 Hz), 2.72 (1H, brs); FABMS:
Part 97 in the series ‘‘Studies on novel synthetic methodolo-
gies.’’ IICT Communication No. 061117.
2
G. Kemp, in Comprehensive Organic Synthesis, ed. by B. M.
Trost, I. Fleming, Pergamon, Oxford, 1991, Vol. 7, p. 469.
a) R. E. Moore, in Marine Natural Products, ed. by P. J.
Scheuer, Academic Press, New York, 1978, Vol. 1, Chap. 2,
pp. 43–121. b) G. Righi, T. Franchini, C. Bonini, Tetrahedron
76, 1259. b) C. Einhorn, J. L. Luche, J. Chem. Soc., Chem.
Commun. 1986, 1363. c) M. I. Konaklieva, M. L. Dahi, E.
M. A. Reddy, K. Surendra, N. Bhanumathi, K. R. Rao,
J. Garner, C. E. Caden, T. A. Hill, L. R. Odell, S. G. Stewart,
ꢂ
m=z 247, 245 [M + H]þ ; Anal. Calcd for C12H17ClO3: C,
58.90; H, 6.95%. Found: C, 58.82; H, 6.91%.
Product 2h: 1H NMR (CDCl3, 200 MHz): ꢁ 7.33–7.21 (5H, m),
4.54 (2H, s), 3.81 (1H, dd, J ¼ 11:0, 2.0 Hz), 3.70 (1H, d,
J ¼ 9:0 Hz), 3.29 (1H, d, J ¼ 9:0 Hz), 2.50 (1H, brs), 2.12
3
4
(1H, m), 1.51 (1H, m), 1.16 (3H, s), 1.08 (3H, d, J ¼ 7:0 Hz);
ꢂ
FABMS: m=z 245, 243 [M + H]þ
; Anal. Calcd for
C13H19ClO2: C, 64.33; H, 7.83; Cl, 14.64%. Found: C, 64.38;
H, 7.79; Cl, 14.69%.
Product 2l: 1H NMR (CDCl3; 200 MHz): ꢁ 3.68 (1H, ddd, J ¼
9:8, 9.1, 3.8 Hz), 3.46 (1H, ddd, J ¼ 9:5, 9.1, 3.8 Hz), 2.51 (1H,
brs), 2.30–2.06 (2H, m), 1.85–1.52 (4H, m), 1.41–1.22 (2H, m);
ꢂ
FABMS: m=z 137, 135 [M + H]þ ; Anal. Calcd for C6H11ClO:
C, 53.53; H, 8.18%. Found: C, 53.46; H, 8.24%.
1
Product 2m: H NMR (CDCl3, 200 MHz): ꢁ 7.73 (2H, d, J ¼
8:0 Hz), 7.39–7.25 (7H, m), 4.92 (1H, t, J ¼ 7:0 Hz), 4.87
(1H, t, J ¼ 7:0 Hz), 3.48–3.34 (2H, m), 2.45 (3H, s); FABMS:
ꢂ
m=z 312, 310 [M + H]þ ; Anal. Calcd for C15H16ClNO2S: C,
58.16; H, 5.17; N, 4.52%. Found: C, 58.28; H, 5.24; N, 4.45%.
Product 2o: 1H NMR (CDCl3, 200 MHz): ꢁ 7.75 (2H, d, J ¼
8:0 Hz), 7.24 (2H, d, J ¼ 8:0 Hz), 5.32 (1H, d, J ¼ 6:0 Hz),
3.48–3.33 (2H, m), 3.20 (1H, m), 2.39 (3H, s), 1.52–1.30
(2H, m), 1.22–1.01 (4H, m), 0.82 (3H, t, J ¼ 7:0 Hz); FABMS:
ꢂ
m=z 292, 290 [M + H]þ ; Anal. Calcd for C13H20ClNO2S: C,
5
6
5, 2543. c) K. Surendra, N. S. Krishnaveni, Y. D. V. Nageswar,
Salehi, Synth. Commun. 1997, 27, 1247.
1417. b) M. K. Ghorai, K. Das, A. Kumar, K. Ghosh, Tetra-
53.89; H, 6.91; N, 4.84%. Found: C, 53.94; H, 6.95; N, 4.81%.
Product 2r: 1H NMR (CDCl3, 200 MHz): ꢁ 7.82 (2H, d,
J ¼ 8:0 Hz), 7.31 (2H, d, J ¼ 8:0 Hz), 5.85 (1H, d, J ¼ 6:0
Hz), 4.05 (1H, ddd, J ¼ 9:5, 9.0, 3.7 Hz), 3.54 (1H, m), 2.42
(3H, s), 2.22–2.01 (2H, m), 1.85–1.69 (2H, m), 1.63–1.32
ꢂ
(4H, m); FABMS: m=z 290, 288 [M + H]þ ; Anal. Calcd for
C13H18ClNO2S: C, 54.26; H, 6.26; N, 4.87%. Found: C,
54.38; H, 6.32; N, 4.81%.