Deev et al.
JOCArticle
SCHEME 1. Azido-Tetrazole Tautomerism in a Series of
Azido-1,2,4-triazines A (X = CR , Y = CR
1
0
of the tetrazolo[5,1-c][1,2,4]triazines T was described in the
cyclization of benzo derivatives of 3-azido-1,2,4-triazines A
2
, Z = N) and
3
, Y = CR , Z = CR )
2
6,27
Azidopyrimidines A (X = CR
1
2
(
Scheme 1, Z=N, X=Y=benzo(C H )).
6 4
X-ray crystallography is usually used to confirm the azo-
1
7-20
loazine structures
mode in tetrazoloazines.
and for determination of the fusion
2
4,28,29
Unfortunately, this method
only gives information about the structure of compounds in
the solid state. To confirm the structure of such compounds
1
13
in solution, indirect UV-vis and H, C NMR spectro-
scopic methods are usually used, based on comparison with
model compounds. In this case, the spectra of tetrazoloa-
zines are most frequently compared with those of their deaza
transformations of the azine ring by the Dimrorth rearrange-
ment can easily change the type of fusion between the azole
2
7,30-32
analogues.
carbon atoms in azoloazines, the direct spectroscopic studies
Due to the low densities of hydrogen and
1
7-23
and azine rings.
tion of the fusion type in azoloazines becomes an important
Therefore, the unambiguous determina-
1
13
using well established H and C NMR methods (1D spec-
troscopy, 2D HMQC, HMBC, INADEQUATE, etc.) did
not provide enough information for structural characteriza-
tion of these compounds. In addition the computational
methods based on calculations of relative thermodynamic
stability of open-chain and cyclic forms can be used for
studies of azido-tetrazole equilibrium. This approach was
successfully applied for investigation of rearrangement of
linear azido-1,2,4-triazines A (Z=N; X=Y=benzo(C H ))
1
7-20
task in organic chemistry.
A similar problem arises from
the possibility of a structural rearrangement in the azole ring.
In this case, the azido-tetrazole tautomerism between fused
tetrazoles and their open-chain isomers (Scheme 1) should be
taken into consideration. For example, the cyclization of the
azido group attached to the di(tri)azine ring at the position
between nitrogen atoms (structure A) can result in formation
0
of two differently fused tetrazoloazines, T and T (Scheme 1).
6
4
Therefore, two structural parameters should be determined
for the characterization of the fused tetrazoloazines: (1) the
state of azide-tetrazole equilibrium and (2) the mode of fusion
between tetrazole and azine rings.
and azidoqunazolines A (X=CH; Z=Y=benzo(C H )) into
4
6
0
33,34
their angular isomers T .
To the best of our knowledge,
there is no general method to study the azido-tetrazole iso-
merization that allows for the direct experimental determina-
tion of the equilibrium state and the structure of the tetrazole
isomers in solution.
In many previous works, topics of the azido-tetrazole
transformation of azido-1,2,4-triazines similar to A (Z = N,
X=CR , Y=CR ) have been discussed, but several aspects
1
5
1
2
N-isotopic labeling of heterocyclic compounds increases
significantly the breadth of NMR methods that can be used
for determination of molecular structures and mechanisms
2
4-32
remain unclear.
1,2,4]triazines T was reported for the isomerization of 3-azido-
,2,4-triazines A (Scheme 1, Z=N, X=CH, Y=CAr; Z=N,
Exclusive formation of tetrazolo[1,5-b]-
[
3
5-37
1
of chemical rearrangements in solution.
In the case of
24,25
15
X=COH, Y=CMe/CPh).
Atthe same time, the formation
tetrazoloazines, the chemical shifts of the labeled N atoms
can be an indicator for either the azide or tetrazole forms of
3
8-44
1
15
13
15
(
15) El Ashry, E. S. H.; Rashed, N. Adv. Heterocycl. Chem. 1998, 72,
27–224.
16) Charushin, V.; Rusinov, V.; Chupakhin, O. In Comprehensive
the molecule.
Heteronuclear H- N and C- N
1
J couplings (JHN and JCN) give direct information about
(
3
chemical structure. Moreover, the vicinal couplings ( J) are
Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven,
E. F. V., Taylor, J. K., Eds.; Pergamon Press: Oxford, UK, 2008; Vol. 9,
Chapter 9.02, pp 95-196.
45
useful in conformational studies of molecules in solution. These
favorable properties of JHN and JCN are used widely in NMR
studies of proteins and nucleic acids, in which heteronuclear
J couplings form the basis of so-called “triple-resonance” experi-
(
17) Loakes, D.; Brown, D. M.; Salisbury, S. A. J. Chem. Soc., Perkin
Trans. 1 1999, 1333–1337.
18) Rusinov, V. L.; Zyryanov, G. V.; Egorov, I. N.; Ulomskii, E. N.;
Aleksandrov, G. G.; Chupakhin, O. N. Russ. J. Org. Chem. 2004, 40, 85–89.
19) Vas’kevich, R. I.; Savitskii, P. V.; Zborovskii, L. Y.; Staninets, V. I.;
Rusanov, E. B.; Chernega, A. N. Russ. J. Org. Chem. 2006, 42, 1403–1408.
20) Carballares, S.; Cifuentes, M. M.; Stephenson, G. A. Tetrahedron
Lett. 2007, 48, 2041–2045.
21) Medwid, J. B.; Paul, R.; Baker, J. S.; Brockman, J. A.; Du, M. T.;
(
46,47
(
ments and play important role in conformational analysis.
(
(33) Asaad, A,N.; El Ashry, E. S. H. Z. Naturforsch. 1996, 51a, 1012–
1018.
(
Hallett, W. A.; Hanifin, J. W.; Hardy, R. A., Jr.; Tarrant, M. E.; Torley,
L. W.; Wrenn, S. J. Med. Chem. 1990, 33, 1230–1241.
(34) Alkorta, I.; Blanco, F.; Elguero, J.; Claramunt, R. M. Tetrahedron
2010, 66, 2863–2868.
(
22) Cameron, M.; Foster, B. S.; Lynch, J. E.; Shi, Y.-J.; Doling, U.-H.
Org. Process Res. Dev. 2006, 10, 398–402.
23) M u€ hlst €a dt, M.; Krausmann, H.; Fischer, G. J. Prakt. Chem. 1970,
12, 254–262.
24) Goodman, M. M.; Atwood, J. L.; Carlin, R.; Hunter, W.; Paudler,
W. W. J. Org. Chem. 1976, 41, 2860–2864.
25) Goodman, M. M.; Paudler, W. W. J. Org. Chem. 1977, 42, 1866–
869.
(35) Farr ꢀa s, J.; Fos, E.; Ramos, R.; Vilarrasa, J. J. Org. Chem. 1988, 53,
887–891.
(36) Chupakhin, O. N.; Rusinov, V. L.; Tumashov, A. A.; Sidorov, E. O.;
Karpin, I. V. Tetrahedron Lett. 1992, 33, 3695–3696.
(37) Coursindel, T.; Farran, D.; Martinez, J.; Dewynter, G. Tetrahedron
Lett. 2008, 49, 906–909.
(38) Th ꢀe taz, C.; Wehrli, F. W.; Wentrup, C. Helv. Chim. Acta 1976, 59,
259–264.
(39) Hull, W. E.; K u€ nstlinger, M.; Breitmaier, E. Angew. Chem. 1980, 92,
957–959; Angew. Chem., Int. Ed. Engl. 198019, 924-926.
(40) Chom, P.; Korczak, H.; Stefaniak, L.; Webb, G. A. J. Phys. Org.
Chem. 1999, 12, 470–478.
(41) Cmoch, P.; Wiench, J. W.; Stefaniak, L.; Webb, G. A. J. Mol. Struct.
1999, 510, 165–178.
(42) Cmoch, P. Magn. Reson. Chem. 2002, 40, 507–516.
(43) Cmoch, P.; Stefaniak, L.; Webb, G. A. Magn. Reson. Chem. 1997, 35,
237–242.
(44) Fruchier, A.; Pellegrin, V.; Claramunt, R. M.; Elguero, J. Org.
Magn. Reson. 1984, 22, 473–475.
(45) Bystrov, V. F. Prog. NMR Spectrosc. 1976, 10, 41–82.
(
3
(
(
1
1
1
8
2
(
26) Messmer, A.; Haj oꢀ s, G.; Benk oꢀ , P.; Pallos, L. J. Heterocycl. Chem.
973, 10, 575–578.
(
27) Messmer, A.; Haj oꢀ s, G.; Tam ꢀa s, J.; Neszm ꢀe lyi, A. J. Org. Chem.
979, 44, 1823–1824.
28) Karczmarzyk, Z.; Mojzych, M.; Rykowski, A. J. Mol. Stuct. 2007,
29, 22–28.
(
(
29) Mojzych, M.; Karczmarzyk, Z.; Rykowski, A. J. Chem. Crystallogr.
005, 35, 151–155.
(
(
30) Stevens, M. F. G. J. Chem. Soc., Perkin Trans. 1 1972, 1221–1225.
31) Castill oꢀ n, S.; Mel ꢀe ndez, E.; Pascual, C.; Vilarrasa, J. J. Org. Chem.
1
982, 47, 3886–3890.
32) Castill oꢀ n, S.; Vilarrasa, J. J. Org. Chem. 1982, 47, 3168–3169.
(
8
488 J. Org. Chem. Vol. 75, No. 24, 2010