Job/Unit: O42774
/KAP1
Date: 26-09-14 13:01:04
Pages: 10
O. Galangau, Y. Kimura, R. Kanazawa, T. Nakashima, T. Kawai
FULL PAPER
diyl)bis(2-methylthiophene) (200 mg, 0.5 mmol, 1 equiv.), 2-iodo-
fluorene (476 mg, 1.6 mmol, 3.0 equiv.) and Ag CO (450 mg,
.6 mmol, 3 equiv.) were added under argon. Dry m-xylene
0.9 mL) was added, and the mixture was heated at 120–130 °C for
4 h. The mixture was cooled to room temp., and CH Cl was
added to dilute the mixture. The solution was filtered through a
pad of silica to remove the remaining solids. The filtrate was con-
centrated under reduced pressure and purified by an automatic
chromatography column, using silica gel and a mixture of hexane
S. Kobatake, M. Irie, J. Phys. Chem. A 2002, 106, 209–214; e)
H. Wang, H. Lin, W. Xu, D. Zhu, Chem. Eur. J. 2013, 19, 3366–
2
3
3
373; f) T. Yamaguchi, W. Taniguchi, T. Kagawa, Y. Kamih-
ashi, T. Ozeki, M. Morimoto, M. Irie, Chem. Lett. 2011, 40,
35–637.
1
(
2
6
2
2
[
[
10] J.-C. Micheau, C. Coudret, O. I. Kobeleva, V. A. Barachevsky,
V. N. Yarovenko, S. N. Ivanov, B. V. Lichitsky, M. M. Krayush-
kin, Dyes Pigm. 2014, 106, 32–38.
11] a) W. Zhu, Y. Yang, R. Métivier, Q. Zhang, R. Guillot, Y. Xie,
H. Tian, K. Nakatani, Angew. Chem. Int. Ed. 2011, 50, 10986–
and CHCl
3
as eluent, affording a pale yellow solid (100 mg, 26%
yield). H NMR (300 MHz, CDCl ): δ = 1.99 (s, 6 H), 3.94 (s, 4
H), 7.30–7.81 (m, 16 H) ppm. 13C NMR (75 MHz, CDCl
): δ =
4.6, 36.7, 120.0, 120.3, 122.0, 122.1, 124.5, 125.1, 125.9, 126.9,
27.0, 131.7, 141.0, 141.6, 142.7, 143.4, 144.0 ppm, m.p. 240 °C.
10990; Angew. Chem. 2011, 123, 11178–11182; b) W. Li, C.
1
3
Jiao, X. Li, Y. Xie, K. Nakatani, H. Tian, W. Zhu, Angew.
Chem. Int. Ed. 2014, 53, 4603–4607; c) S. Pu, C. Zheng, Q.
Sun, G. Liu, C. Fan, Chem. Commun. 2013, 49, 8036–8038.
12] R. Göstl, B. Kobin, L. Grubert, M. Pätzel, S. Hecht, Chem.
Eur. J. 2012, 18, 14282–14285.
3
1
1
[
IR: ν˜ = 531, 563, 677, 732, 766, 823, 980, 995, 1058, 1108, 1192,
–
1
[13] F. Stellacci, C. Bertarelli, F. Toscano, M. Z. Gallazi, G. Zotti,
1
263, 1340, 1429, 1449, 2850, 2965, 3050 cm . HRMS-EI: calcu-
+
G. Zerbi, Adv. Mater. 1999, 11, 292–295.
lated for C41
26 6 2
H F S 696.1380; found 696.1364 [M ].
[
[
[
[
14] S. Fukumoto, T. Nakashima, T. Kawai, Angew. Chem. Int. Ed.
011, 50, 1565–1568; Angew. Chem. 2011, 123, 1603.
15] S. Fukumoto, T. Nakashima, T. Kawai, Eur. J. Org. Chem.
011, 5047–5053.
16] K. Morinaka, T. Ubukata, Y. Yokoyama, Org. Lett. 2009, 11,
890–3893.
17] a) H. Utsumi, D. Nagahama, H. Nakano, Y. Shirota, J. Mater.
Chem. 2000, 10, 2436–2437; b) Y. Shirota, H. Utsumi, T. Ujike,
S. Yoshikawa, K. Moriwaki, D. Nagahama, H. Nakano, Opt.
Mater. 2002, 21, 249–254; c) H. Utsumi, D. Nagahama, H.
Nakano, Y. Shirota, J. Mater. Chem. 2002, 12, 2612–2619.
18] H. Kamiya, S. Yangisawa, S. Hiroto, K. Itami, H. Shinokubo,
Org. Lett. 2011, 13, 6394–6397.
Supporting Information (see footnote on the first page of this arti-
2
1
13
cle): Copies of H NMR and C NMR spectra, VT-NMR spectro-
scopic data, NMR monitoring of the photoreaction, DFT calcula-
tions details, X-ray structural data.
2
3
Acknowledgments
O. G. thanks the Japan Society for the Promotion of Science and
the Centre National pour la Recherche Scientifique (CNRS) for
financial support. This work was also partly supported by the Min-
istry of Education, Culture, Sports, Science and Technology
[
[
[
(MEXT), Japan (Grant-in-Aid for Scientific Research on Innov-
19] S. Kawai, T. Nakashima, Y. Kutsunugi, H. Nakagawa, H. Nak-
ano, T. Kawai, J. Mater. Chem. 2009, 19, 3606–3611.
ative Area, “Application of Cooperative Excitation into Innovative
Molecular Systems with High-Order Photofunctions” by the Nan-
otechnology Platform Program running in Japan Advanced Insti-
tute of Science and Technology, JAIST). The authors are grateful
to Mr. M. Asanoma and Mr. M. Katao, technical staff members
at NAIST, for their help with VT-NMR experiments and X-ray
characterizations, respectively. Finally, the authors show their grati-
tude to Prof. Delbaere, Prof. Maurel, Dr. Sliwa, Dr. Aloïse and Dr.
Perrier for fruitful discussions.
20] H. Nishi, T. Namari, S. Kobatake, J. Mater. Chem. 2011, 21,
17249–17258.
[
[
21] F. Sauter, H. Fröhlich, W. Kalt, Synthesis 1989, 10, 771–773.
22] K. Matsuda, K. Takayama, M. Irie, Chem. Commun. 2001,
363–364.
[
23] a) J. Massaad, J.-C. Micheau, C. Coudret, R. Sanchez, G. Guir-
ado, S. Delbaere, Chem. Eur. J. 2012, 18, 6568–6575. See also:
b) S. Delbaere, J. Berthet, T. Shiozawa, Y. Yokoyama, J. Org.
Chem. 2012, 77, 1853–1859; c) R. Göstl, B. Kobin, L. Grubert,
M. Pätzel, S. Hecht, Chem. Eur. J. 2012, 18, 14282–14285; d)
S. Aloïse, M. Sliwa, G. Buntinx, S. Delbaere, A. Perrier, F.
Maurel, D. Jacquemin, M. Takeshita, Phys. Chem. Chem. Phys.
[
[
1] G. H. Brown (Ed.), Photochromism, Techniques in Chemistry,
vol. 3, Wiley-Interscience, New York, NY, 1971.
2] H. Dürr, H. Bouas-Laurent (Eds.), Photochromism: Molecules
and Systems, Elsevier, Amsterdam, 1990.
2
013, 15, 6226–6234.
24] a) M. Irie, T. Eriguchi, T. Takada, K. Uchida, Tetrahedron
997, 53, 12263–12271; b) A. T. Bens, D. Frewert, K. Kodatis,
[
[
[
[
3] M. Irie, Chem. Rev. 2000, 100, 1684–1716.
4] B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geert-
sema, Chem. Rev. 2000, 100, 1789–1816.
1
C. Kryschi, H.-D. Martin, H. P. Trommsdorf, Eur. J. Org.
Chem. 1998, 2333–2338.
[
5] V. Balzani, A. Credi, M. Venturi, in: Molecular Devices and
Machines: A Journey into the Nano World, Wiley-VCH,
Weinheim, Germany, 2003.
25] Crystallographic data of TTo: C H F S , C H F S , a =
41 26
6
2
32 20 6 2
9
1
7
.9787(2) Å,
597.53(6) Å ,
b
=
α
11.4122(2) Å,
70.9671(7)°,
c
=
15.1487(3) Å,
89.4662(7)°,
V
γ
=
=
3
=
β
=
[
6] J. A. Delaire, K. Nakatani, Chem. Rev. 2000, 100, 1817–1816.
7] Y. Hasegawa, T. Nakagawa, T. Kawai, Coord. Chem. Rev. 2010,
3
8.8813(7)°, ρcalcd. = 1.448 g/cm , triclinic. Of the 27724 reflec-
[
tions measured, up to 2θ = 55.0° were collected, 4731 were
unique (Rint = 0.0237). Hydrogen atoms were calculated, in:
riding positions. CCDC-987958 contains the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
254, 2643–2651.
[
8] a) S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. As-
ano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yoko-
jima, S. Kobatake, M. Irie, J. Phys. Org. Chem. 2007, 20, 821–
829; b) M. Irie, K. Sayo, J. Phys. Chem. 1992, 96, 7671–7674;
c) H. Miyasaka, T. Nobuto, M. Murakami, A. Itaya, N. Tamai,
M. Irie, J. Phys. Chem. A 2002, 106, 8096–8102; d) M. Irie, M.
Mohri, J. Org. Chem. 1988, 53, 803–808; e) S. Castellanos, L.
Brubert, R. Stößer, S. Hecht, J. Phys. Chem. C 2013, 117,
[26] Crystallographic data of BTo:
a
=
14.1418(9) Å,
b
=
=
3
7.7792(5) Å, c = 47.021(3) Å, V = 5172.8(6) Å , ρcalcd.
1.496 g/cm , orthorhombic. Of the 67657 reflections measured
up to 2θ = 55.0° were collected, 7323 were unique (Rint =
3
23529–23538.
[
9] a) M. Irie, Proc. Jpn. Acad., Ser. B 2010, 86, 472–483; b) T.
0.1590). CCDC-961406 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Yamada, S. Muto, S. Kobatake, M. Irie, J. Org. Chem. 2001,
6
6, 6164–6168; c) M. Irie, T. Lifka, S. Kobatake, N. Kato, J.
Am. Chem. Soc. 2000, 122, 4871–4876; d) K. Shibata, K. Muto,
8
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0