6
56 J. Am. Chem. Soc., Vol. 118, No. 3, 1996
Kropf et al.
the stabilization of the redox products against back electron
transfer. A further method to organize photosensitizer-acceptor
diads involved intermolecular non-covalent linkage of the diad
components by complementary H bonds or a molecular receptor
bipyridazine)(6,6′-bis[8-((4-methoxyphenyl)oxy)-3,6-dioxaoctyl-
1-oxy]-3,3′-bipyridazine)ruthenium(II) dichloride (1), tris(6,6′-
bis[8-((4-methoxyphenyl)oxy)-3,6-dioxaoctyl-1-oxy]-3,3′-
bipyridazine)ruthenium(II) dichloride (2), and tris(6-(8-hydroxy-
3,6-dioxaoctyl-1-oxy)-6′-[8-((4-methoxyphenyl)oxy)-3,6-
dioxaoctyl-1-oxy]-3,3′-bipyridazine)-1,3,5-benzene-tricarboxylate-
ruthenium(II) dichloride (3), with the bipyridinium cyclophane
9,10
unit.
Recently, we reported on a novel approach to organize
chromophore-electron acceptor diad assemblies by the applica-
tion of electron donor-modified chromophores that form the
supramolecular non-covalently-linked diads with the electron
4
+
(BXV , 4). We examine the electron-transfer quenching
pathways in the resulting supramolecular assemblies and
characterize the resulting photogenerated redox products and
their recombination in the supramolecular assemblies. We find
that effective electron-transfer quenching of the excited chro-
mophores proceeds in the supramolecular systems and that the
resulting supramolecular complex of photoproducts is preserved.
We reveal that the lifetime of the photogenerated redox products
in the supramolecular asemblies is long as compared to other
molecular diad systems. This is attributed to the fact that the
alkoxyanisyl binding sites are tethered to the Ru(II) chro-
mophores by poly(ethylene glycol) chains. Association of
11
acceptor via donor-acceptor interactions.
Similarly, we
showed that the formation of donor-acceptor supramolecular
complexes between a molecular triad and electron donor results
in steric rigidification of the triad that results in photoinduced
vectorial electron transfer and stabilization of the redox products
against back electron transfer.12
It is established that N,N′-dialkylbipyridinium salts form
1
3,14
donor-acceptor complexes with different electron donors.
Recently, the intermolecular complexes between dialkoxyben-
4+
zenes and cyclo[bis(N,N′-p-xylylene-4,4′-bipyridinium)], BXV ,
1
5,16
were extensively studied by Stoddart and co-workers.
It
4
+
was found that dialkoxybenzene intercalates into the bipyri-
dinium cyclophane via donor-acceptor interaction, and the
resulting stable supramolecular assemblies were applied to
BXV to the binding sites results in electrostatic repulsions
between the electron-acceptor and the Ru(II)-chromophore
component that induce the steric spatial separation of the redox
products which are stabilized against back electron transfer.
17,18
synthesize ingenious catenane macromolecules.
Chemical
modification of Ru(II)-polypyridine complexes with dialkoxy-
4
+
benzene units could provide binding sites for the BXV
Experimental Section
electron acceptor. Here we wish to report on the supramolecular
complexes formed between the series of alkoxyanisyl-tethered
Ru(II)-tris(bipyridazine) complexes: bis(6,6′-dimethoxy-3,3′-
Absorption spectra were recorded with a Uvikon-860 (Kontron)
spectrophotometer. Fluorescence spectra were recorded with a SFM-
2
5 (Kontron) spectrofluorometer. Flash photolysis experiments were
carried out with a Nd-YAG laser (Model GCR-150, Spectra Physics)
coupled to a detection system (Applied Photophysics K-347) that
included a monochromator and photomultiplier linked to a digitizer
(Tektronix 2430 A) and computer for data storage and processing. This
flash-photolysis setup has a time resolution of >20 ns. For shorter
time-scale transients (>0.5 ns) a flash photolysis system consisting of
(
8) (a) Yonemoto, E. H.; Kim, Y. I.; Schmehl, R. H.; Wallis, J. O.;
Shoulders, B. A.; Richardson, B. R.; Haw, J. F.; Mallouk, T. E. J. Am.
Chem. Soc. 1994, 116, 10557. (b) Vermuelen, L. A.; Thompson, M. E.
Nature 1992, 358, 656. (c) Ungashe, S. B.; Wilson, W. L.; Katz, H. E.;
Scheller, G. R.; Putrinski, T. M. J. Am. Chem. Soc. 1992, 114, 8717.
(9) (a) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1993,
1
1
15, 10418. (b) Harriman, A.; Kubo, Y.; Sessler, J. L. J. Am. Chem. Soc.
992, 114, 388. (c) Turr o´ , C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.;
a N
2
laser (PRA, LN-1000) coupled to a dye laser (Laser Photonics,
Coumarin 440) was employed. These lasers were coupled to a detection
system consisting of a monochromator and photomultiplier (Applied
Photophysics) linked to a digitizer (Tektronix 7912 AD) and a computer
for data storage and analysis.
All materials and solvents were of highest purity from commercial
sources (Aldrich, Sigma). The ligands (6,6′-bis[8-((4-methoxyphenyl)-
oxy)-3,6-dioxaoctyl-1-oxy]-3,3′-bipyridazine and (6,6′-bis[8-((4-meth-
Nocera, D. G. J. Am. Chem. Soc. 1992, 114, 4013.
10) (a) Sun, L.; von Gersdorff, J.; Niethammer, D.; Tian, P.; Kurreck,
(
H. Angew. Chem., Int. Ed. Engl. 1994, 33, 2318. (b) Sun, L.; von Gersdorff,
J.; Sobek, J.; Kurreck, H. Tetrahedron 1995, 51, 3535. (c) D u¨ rr, H.;
Bossmann, S.; Schwarz, R. J. Inf. Rec. Mater. 1994, 21, 471. (d) D u¨ rr, H.;
Bossmann, S.; Kropf, M.; Hayo, R.; Turro, N. J. J. Photochem. Photobiol.
A: Chemistry 1994, 80, 341.
(
11) Seiler, M.; D u¨ rr, H.; Willner, I.; Joselevich, E.; Doron, A.; Stoddart,
J. F. J. Am. Chem. Soc. 1994, 116, 3399.
12) Zahavy, E.; Seiler, M.; Marx-Tibbon, S.; Joselevich, E.; Willner,
I.; D u¨ rr, H.; O’Connor, D.; Harriman, A. Angew. Chem., Int. Ed. Engl.
995, 34, 1005.
13) (a) Willner, I.; Eichen, Y.; Rabinovitz, M.; Hoffman, R.; Cohen, S.
oxyphenyl)oxy)-3,6,9-trioxaundecyl-1-oxy]-3,3′-bipyridazine were pre-
(
19,20
pared by coupling
of 6-[8-((4-methoxyphenyl)oxy)-3,6-dioxaoctyl-
1
-oxy)-3-chloropyridazine or 6-[11-((4-methoxyphenyl)oxy)-3,6-
trioxaundecyl-1-oxy]-3-chloropyridazine, respectively, in the presence
of Ni(PPh (DMF, 8h) followed by chromatographic purification
(SiO , CH -CH OH 95:5 (v/v) as eluent). The photosensitizer bis-
(6,6′-dimethoxy-3,3′-bipyridazine)(6,6′-bis[8-((4-methoxyphenyl)oxy)-
,6-dioxaoctyl-1-oxy)-3,3′-bipyridazine)ruthenium(II) dichloride (1) was
prepared by the reaction of Ru(II)-bis(6,6′-dimethoxy-3,3′-bipyridazine)
100 mmol) and the respective ligand (150 mmol) (ethylene glycol,
80 °C, 4 h) followed by chromatographic separation (SiO , CH Cl
CH OH 80:20 (v/v) as eluent). The photosensitizers, tris(6,6′-bis[8-
1
(
3 4
)
J. Am. Chem. Soc. 1992, 114, 637. (b) Kisch, H.; Fernandez, A.; Wakatsuki,
Y.; Yamazaki, H. Z. Naturforsch. 1985, 406, 292. (c) Nakamura, K.; Kai,
Y.; Yasuoka, N.; Kasai, N. Bull. Chem. Soc. Jpn. 1981, 54, 3300.
2
Cl
2 2
3
(14) (a) Usui, Y.; Misawa, H.; Sakuragi, H.; Tokumara, U. Bull. Chem.
3
Soc. Jpn. 1987, 60, 1573. (b) Willner, I.; Eichen, Y.; Joselevich, E. J. Phys.
Chem. 1990, 94, 3092.
(
(15) Anelli, P. L.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Delgado,
1
2
2
2
-
M.; Gandolfi, M. T.; Goodnow, T. T.; Kaifer, A. E.; Philip, D.; Pietrasz-
kiewicz, M.; Prodi, L.; Reddington, M. V.; Slavin, A. M. Z.; Spencer, N.;
Stoddart, J. F.; Vincent, C.; Williams, D. J. J. Am. Chem. Soc. 1992, 114,
2
((4-methoxyphenyl)oxy)-3,6-dioxaoctyl-1-oxy]-3,3′-bipyridazine)ru-
thenium(II) dichloride (2a) and tris(6,6′-bis[11-((4-methoxyphenyl)oxy)-
1
93.
16) (a) Anelli, P. L.; Ashton, P. R.; Spencer, N.; Slawin, A. M. Z.;
Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1991, 30,
036. (b) Ashton, P. R.; Odell, B.; Reddington, M. V.; Slavin, A. M. Z.;
Stoddart, J. F.; Williams, D. J. Angew. Chem. 1988, 27, 1550.
17) (a) Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc.
991, 113, 5131. (b) Ashton, P. R.; Brown, C. L.; Chrystal, E. J. T.;
(
3
,6,9-trioxaundecyl-1-oxy]-3,3′-bipyridazine)ruthenium(II) dichloride
(
2b), were prepared by the reaction of Ru(DMSO)
4
Cl
2
(100 mmol)
O, 3:1 (v/v)
1
and the respective ligands (400 mmol) in ethanol-H
2
(
(reflux, 24 h), followed by chromatographic purification (SiO
Cl -CH OH, 80:20 (v/v) as eluent).
The ligand (6-[3,6-dioxaoctyl-1-oxy]-6′-[8-((4-methoxyphenyl)oxy)-
,6-dioxaoctyl-1-oxy]-3,3′-bipyridazine)-1,3,5-benzene-tricarboxylate
2 2
, CH -
1
2
3
Goodnow, T. T.; Kaifer, A. E.; Parry, K. P.; Slawin, A. M. Z.; Spencer,
N.; Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1991, 30,
3
1
039. (c) Ashton, P. R.; Philip, D.; Spencer, N.; Stoddart, J. F. J. Chem.
Soc., Chem. Commun. 1992, 1124.
18) (a) Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. Nature
994, 369, 133. (b) Ashton, P. R.; Ballardini, R.; Balzani, V.; Gandolfi, M.
was prepared by the reaction between 6-(8-hydroxy-3,6-dioxaoctyl-1-
oxy)-6′-[8-((4-methoxyphenyl)oxy)-3,6-dioxaoctane and benzene tri-
(
1
T.; Marquis, D. J.-F.; Per e´ z-Garci a´ , L.; Prodi, L.; Stoddart, J. F.; Venturi,
M. J. Chem. Soc., Chem. Commun. 1994, 177. (c) Amabilino, D. B.; Ashton,
P. R.; Reder, A. S.; Spencer, N.; Stoddart, J. F. Angew. Chem., Int. Ed.
Engl. 1994, 33, 433.
(19) (a) Tiecco, M. Bull. Soc. Chim. Belg. 1986, 95, 1009. (b) Kendo,
A.; Liebeskind, L.; Braitsch, D. Tetrahedron Lett. 1975, 3375.
(20) Detailed synthesis of the complexes will be described elsewhere:
D u¨ rr, H.; Kropf, M. In preparation.